

Efficient Large-scale Photometric Reconstruction Using Divide-Recon-Fuse 3D Structure from Motion

Yueming Yang¹, Ming-Ching Chang^{1,2}, Longyin Wen¹, Peter Tu², Honggang Qi³ and Siwei Lyu¹

¹State University of New York, Albany ²GE Global Research ³University of China Academy of Science

August 23-26, 2016 AVSS Colorado Springs, CO

• 3D video surveillance

• 3D video surveillance

3D video surveillance

Yang, Chang, Lyu, Tu, ICIP 2015

3D video surveillance

Yang, Chang, Lyu, Tu, ICIP 2015

Research Trends on 3D Data Acquiring

- Laser scanning
 - growing rapidly in recent years
 - but need expensive equipment

VISIDO IMAGING Inc. 2013

Research Trends on 3D Data Acquiring

- Laser scanning
 - growing rapidly in recent years
 - but need expensive equipment

- Reconstruct from 2D images
 - popular research area in last decade
 - Computing is time consuming

VISIDO IMAGING Inc. 2013

Agarwal, et.al., ICCV 2009

3D reconstruction from 2D images

Feature detection

3D reconstruction from 2D images

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

3D reconstruction from 2D images

Feature detection

Feature matching

3D reconstruction from 2D images

Feature detection

Feature matching

3D reconstruction from 2D images

Feature detection

Feature matching

Estimate 3D points

Wu, VisualSfM, 2011

3D reconstruction from 2D images

Feature detection

Feature matching

Estimate 3D points

Bundle adjustment

Wu, VisualSfM, 2011

3D reconstruction from 2D images

problem: computing is time consuming

Data set	Images	Cores	Registered	Pairs verified	Pairs found	Time (hrs)		
						Matching	Skeletal sets	Reconstruction
Dubrovnik	57,845	352	11,868	2,658,264	498,982	5	- 31	16.5
Rome	150,000	496	36,658	8,825,256	2,712,301	13	1	
Venice	250,000	496	47,925	35,465,029	6,119,207	27	21.5	16.5

Table 1. Matching and reconstruction statistics for the three data sets.

Agarwal, et.al., ICCV 2009

3D reconstruction from 2D images

problem: computing is time consuming

# Images	# Matches	#Matching time (seconds)
10	45	3.6
100	4950	396
1000	499500	39960
10000	49995000	3999600
100000	4999950000	399996000 (12.68 years)

Recent Trends

Divide and Reconstruct

Yasutaka Furukawa, CVPR 2014

Divide and conquer then fusion

2D images

Recent Trends

Divide and Reconstruct

Yasutaka Furukawa, CVPR 2014

Bhowmick, et al., ACCV 2014

Recent Trends

Divide and Reconstruct

Yasutaka Furukawa, CVPR 2014

Bhowmick, et al., ACCV 2014

Cohen, et al., ICCV 2015

Merge

- . The most difficult step
- Depends on the application (visualization, analysis, ...)

Merge for visualization

Hide gaps between reconstructions

Yasutaka Furukawa, CVPR 2014

Divide and conquer then fusion

Rigid transformation estimation

$$\vec{y_i} = \frac{1}{s} (R\vec{x_i} + \vec{c})$$

Divide and conquer then fusion

Rigid transformation estimation

$$\vec{y_i} = \frac{1}{s} (R\vec{x_i} + \vec{c})$$

$$\min_{R,s,\vec{c}} \sum_{i=1}^{n} \|s\vec{y_i} - R\vec{x_i} - \vec{c}\|^2 \quad \text{s.t.} \quad R^T R = R R^T = I. \quad (1)$$

Divide and conquer then fusion

Rigid transformation estimation

$$\vec{y_i} = \frac{1}{s} (R\vec{x_i} + \vec{c})$$

```
\min_{R,s,\vec{c}} \sum_{i=1}^{n} \|s\vec{y_i} - R\vec{x_i} - \vec{c}\|^2 \quad \text{s.t.} \quad R^T R = R R^T = I. \quad (1)
```

```
Table 1. Procedure EstTransformRANS&C(X, Y, K)

    index +- (1 to n)

 2: n_inliers e= 0
    for k = 1 to K do.
         ide wrandomly select 6 numbers from index
         X_i \leftarrow X(sdx), Y_i \leftarrow Y(sdx)
         R_i, s_i, c_i \leftarrow EstTransformSVD(X_i, Y_i)
         x_i \leftarrow [s_i \mathbf{Y}_i - \mathbf{R}_i \mathbf{X}_i - \ell_i]
         n_s \leftarrow number of items in \epsilon_s which are \leq \tau
         if n, \ge minfers then
              n_inbers \leftarrow n_i
              \mathbf{R} s.c.e \leftarrow \mathbf{R} s.c.c.e.
    end for
14: return R. s. c. c. n. in/irrs
```

Robust rigid transformation estimation

Comparison of computational time for the two university campus datasets

Dataset	Clusters	#Images	#Anchors	Match pairs	Matching time	SfM (BA)
Campus Podium	Cluster 1	201	C1-C2: 14	20100	0.43 hours	55 seconds
	Cluster 2	188	C1-C2; 7	17,578	0.4 hours	45 seconds
	Cluster 3	147	C1-C2: 20	30,576	0.23 hours	35 seconds
	Cluster 4	215	C1-C2: 11	23,005	0.51 hours	42 seconds
	Cluster 5	218	C1-C2: 13	23,653	0.48 hours	57 seconds
	Cluster 6	260	C1-C2: 17	33,670	0.70 hours	80 seconds
	Cluster 7	258	C1-C2:19	33,153	0.73 hours	62 seconds
	Cluster 8	293	C1-C2: 10	42,778	0.9 hours	62 seconds
	Divide-conquer	1780	111	224,513	4.38 hours	438 seconds
	All(Brute force)	1,669		139,1946	26.80 hours	512 seconds
Track Field	Cluster 1	461	C1-C2: 11	106,030	1.84 hours	191 seconds
	Cluster 2	466	C2-C3: 9	10,8345	2.13 hours	170 seconds
	Cluster 3	415	C3-C4: 10	85,905	1.71 hours	91 seconds
	Cluster 4	359	C4-C5: 10	64,261	1.41 hours	103 seconds
	Cluster 5	290	C5-C6: 10	41,905	0.78 hours	77 seconds
	Cluster 6	276	C6-C7: 10	37,950	0.59 hours	106 seconds
	Cluster 7	272	C7-C8: 10	36,856	0.73 hours	166 seconds
	Cluster 8	311	C8-C1: 11	48,205	0.97 hours	130 seconds
	Divide-conquer	2,850	81	156,550	10.16 hours	1,034 second
	All(Brute force)	2,769	0000	3,832,296	67.67 hours	887 seconds

Williams, et.al., RAS 2009

Williams, et.al., RAS 2009

Williams, et.al., RAS 2009

$$X^1 = \mathbf{R}_M \dots \mathbf{R}_3(\mathbf{R}_2(\mathbf{R}_1\mathbf{X}^1 + \mathbf{t}_1) + \mathbf{t}_2) + \mathbf{t}_3) \dots + \mathbf{t}_M$$

Other Experiments

Other Experiments

Video Demo

Conclusions

Provide a way of turning video surveillance into 3D

- Largely reduce the image matching time compare to traditional SfM 3D reconstruction
- Propose a novel formulation of adding "anchor images" to provides powerful hints in the stitching individual 3D reconstructions

Future works

- Improve the avatar figure in 3D surveillance
- Dense SIFT features
- Digitize the world and make 3D tour applications

Thank you!