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7.1 Introduction

System dynamics modeling offers an attractive tool for policy evaluation.
Policy alternatives can be simulated by computer; thus the policies can be
tested under completely controlled conditions. A special programming
language, DYNAMO, is widely available and simplifies the mechanics of
computer simulation. But simulations require a model, and model
building is still an art in many respects. There is no step-by-step
procedure that automatically produces a useful model. However, as more
and more models are created, some steps in the modeling process have
become clearer, and procedures can now be formalized to some extent,
This paper lays out the main techniques of one important step in system
dynamics modeling: the estimation of parameters. It is assumed that the
reader is familiar with system dynamics and the DYNAMO language.

The appropriateness of the various parameter estimation techniques
depends upon the entire context of the model-building process. For
example, parameter estimation is closely dependent on equation for-
mulation and model testing. Graham {1978) discusses these interdepen-
dencies in detail, so they will be touched on only briefly here. This
chapter is a taxonomy of estimation techniques; the types of data,
assumptions, and procedures that characterize each technique are speci-
fied. The purpose is to help the reader choose an appropriate technique
~and to avoid pitfalls.

Throughout the exposition of techniques, exampies are drawn from a
simple model of urban housing, which portrays the growth and maturity
of an urban residential area. The appendix gives the complete equations

for the model, which is based on a mode! described in Alfeld and Graham
(1976, ch. 6).
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7.2 Estimation Using Data below the Level of Aggregation of
Model Variables

Most parameters in system dynamics studies are estimated on the basis of
descriptive information obtained from participants in the system being
modeled. That information is more detailed than data that corresponds
directly to model variables. There are two kinds of model variables: level
variables, which aggregate a collection of items like houses into a leve} of
houses, and rate variables, which aggregate a stream of events like the
construction of a house into a rate of housing construction. By contrast,
data below the level of aggregation of model variables characterize the
individual members of a level, or the individual events within a rate. For
brevity, such data will sometimes be referred to as “unaggregate data,”

For an example of setting parameters using unaggregate data, consider
an equation representing housing demolition:

HD.E=H.K/HL 1, R
HL=686 1.1, ¢C
HD —~ HOUSTNG DEMOLITION (HOUSES/YERR}
H =~ HOUSES (HOQUSES)
HL - HOUSING UNIT LIFETINE {YEARS)

The model assumes a constant average housing unit lifetime, HL, so that
every year, | /HL of the houses, H, are demolished. HL can be estimated
in many ways from unaggregate data; in none is the equation used in
computing the estimate. Equation (1) is used only to define the function
of HL in the model. One time-consuming approach to estimating HL
would be to survey a number of houses that have been demolished, take
their ages at the time of demolition, and average those ages to determine
an average housing unit lifetime, HL. The information used to set the
parameter concerns individual houses and their demolition, which the
model variables aggregate into a level of houses, H, and their outflow
rate of housing demolition, HD. Thus the data come from below the level
of aggregation of model variables.

As another means of obtaining information about the lifetime of
houses, the modeler can examine the ages of existing houses, and observe
the age at which very few houses remain standing. Or the modeler can
consult someone who has observed construction and demolition of
houses closely, and ask that person how long houses typically last {(or
survive neighborhood changes or eminent domain proceedings.) Indeed,
asking experts questions of wider scope is the basis of the popular Delphi
method (Turoff, 1970). The modeler can sometimes obtain descriptive
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histories of particular neighborhoods that chronicle the successive waves
of demolition ard construction, and thus gain some idea of how long the
previous houses in that neighborhood lasted. The modeler can also call
upon his own experiences in observing the physical decay of one ormore
houses, and extrapolate to estimate how long a house will last, Finally,

~ lacking any better information, the modeler can take two extreme values

that are clearly too large and too small and pick a value somewhere
between them. Modelers seldom rely on this last technique, since it is
based on the implicit assumption that in the entire world there is no
available information that would lead the modeler to a single estimate of
the parameter in question.

These examples suggest that the sources for data below the level of
aggregation of model variables are numerous and diverse. The data for

 the lifetime of houses came from city hall records, a history book, expert
" testitnony, and the modeler's own day-to-day experiences. In fact, aif

factual knowledge about a system—-records, books, eyewitnesses, and
personal experience——{alls into the category of unaggregate data; the only
exception is collected statistics corresponding to model variables. Thus
unaggregate data are by far the most abundant source of knowledge

about real systems.

: Table Functions

We have shown six different ways to estimate the average housing unit
lifetime using unaggregate data. All six are straightforward. This section
.describes a technique for estimating the 5 to 15 numbers that typically
specify a table function. This may seem to be a formidable estimation
problem, but it can be broken into subproblems: estimating the value and
the slope of the function at one extreme, at the normal value, and at the

other extreme, and connecting those known values and slopes with a

smooth curve. Once these four subproblems are solved, the table function
is known to within a narrow range of values.

- For example, consider a group of equations that represent the effect of
land availability on housing construction. The rate of housing construe-
tion, HC, is proportional to the number of houses, H, already within the

- urban area; thus when other things remain the same, more houses, more

infrastructure, and more people create a farger market for new housing
construction. The parameter that gives the constant of proportionality is

- the housing construction normal, HCN. The rate of housing construc-
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tion, HC, is modulated by land availability; this modulation is ac-
complished by the housing-land multiplier, HLM:

HC.K=8.K*HCN*HLM.K

2, R
HCN=0.,07 2.1, ¢
BC - HOUSING CONSTRUCTION (HOUSES/YEAR)
2] - HOUSES (BOUSES)
BCN ~ BOUSING CONSTRUCTION NORMAL (FRACTION/YEAR)
HLM - HOUSING LAND MULTIPLIER (DIMENSTIONLESS)

The housing-land multiplier, HELM, responds to land availability,
which is quantified by the land fraction occupied, LFQ:

BLM.K=TABLE (HLMT,LFO.K,0,1,.1) 3, A
BLWT=.8/.95/1.075/1.2/1.3/1.35/1.35/1.,25/1/_6/0 3.1, 0
BLM - HOUSING LAND MULTIPLIER (DIMENSIONLESS)
TAELE -~ TABLE INTERPOLATION FUNCTION
BLMT - BOUSING LAND MULTTIDPLIER TABRLE
LEC - LAND FRACTION OCCUPIED (DIMENSIONLESS)

The graph for HLM is shown in figure 7.1. To estimate the table function
for HLM, first consider the extreme condition of zero land occupancy,
where incentives for construction should be less intense than with higher
occupancy. When the land fraction occupied, LFO, approaches 0 (near
the left side of the curve in figure 7.1), most of the area being modeled is
vacant land. The area’s viability as a future city has not yet been
demonstrated. Developers cannot rely on continuing demand for the
housing units they construct. Also, services taken for granted in more
heavily settled areas must be instalied in each successive new neighbor-
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Housing-tand muitiplier table, equation (4)
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hood: roads, sewers, electricity, gas, schools, and public transportation.
Sparsely settled areas often cannot make city water or sewers (let alone
public transportation) an economical proposition. So when the land
fraction occupied LFO equals 0 the housing-land multiplier, HLM,
should be lower than at most other values of LFO (point 4 on figure 7.1
uses the value of 0.8 for HLM).

Adding housing units to a sparsely settled area encourages more urban
services. Urban services demonstrate the area’s viability, and make
housing construction more profitable. But adding a few houses cannot
pay for the infrastructure—schools, roads, libraries, and utilities—
necessary to deliver a complete ensemble of urban services. The curve for
the housing-land multiplier table, HLMT, should slope upward, but not
very steeply from where LFO equals 0 (see the line segment between
points 4 and B in figure 7.1).

Now consider the normal condition. Equation (2) defines the tate of
housing construction, HC, so that it occurs in normal proportion to
houses (specified by housing construction normai, HCN) when the
housing land multiplier, HLM, equals 1.0, For consistency, HLM must
equal 1.0 at whatever value of the land fraction occupied LFQ is defined
as normal. Normal conditions are defined to occur near the end of the
area’s growth when land availability begins to constrain further construc-
tion. In this model, the normal value of LFO is defined to be 80 percent
land occupancy (point C in figure 7.1).

At the normal condition, land availability begins to constrain housing
construction. Thus the table function must have a negative slope at the
normal point, so that diminishing land availability in the model likewise
begins to constrain further construction in the model. The negative slope
at the normal point in turn implies that the table function must exceed a
value of 1.0 just under the normal value of land fraction occupied, LFQ.

Now consider the other extreme condition in which the land fraction
occupied, LFO, equals 1.0. The land area within the city or district being
modeled is totally occupied; even the least desirable sites have been built
upon. Regardless of the incentives to construct, no housing can be
constructed within the arca being modeled until there is some physical

_space available upon which to build—that is, until LFO is fess than 1.0.
“So the housing-land multiplier, HLM, should equal 0 when LFO equals

1.0, which establishes point E in figure 7.1.

If the land fraction occupied, LFO, was not 1.0 but close to 1.0 (nearly
full land occupancy), urbarn services like sidewalks, schools, libraries,
roads, and public transportation would be fully developed. To be sure,
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the crowding and lack of desirable construction sites implied by an LFO
close to 1.0 would not cause housing construction to take place as rapidly
as under normal conditions. Nonetheless, any small reduction of LFQ
from 1.0 opens up the possibility of appreciable housing construction.
Therefore the curve of the housing-land multiplier should have a steep
slope as LFO approaches 1.0 (see the line segment between poinfs D and
E on figure 7.1).

So far, values have been estimated at and near two extreme conditions
and at the normal condition. Now all that remains is to draw a curve
through the estimated points. Any sharply bent or kinked curve is
probably not realistic. A bend or kink wimmom something special about
the exact conditions at which the bend or kink oceurs, Since the housing-
land multiplier table, HLMT, represents many phenomena (prices,
availability, infrastructure, and so forth), the probability is small that all
phenomena would show major changes at a unique set of conditions.
Accordingly, the curve for HLMT (and in general for all highiy
aggregated relationships) should change smoothiy.

Solving the subproblems of extreme and normal conditions, and
connecting known points with smooth curves, allows the modeler to
estimate a nonlinear table function with confidence. The dotted lines
show alternate curves for HLMT that also satisfy the constraints for
extreme values, slopes, and smooth curvature; these constraints allow
little latitude in specifying HLMT. The estimated table thus summarizes
observations of a large number of processes below the level of aggrega-
tion of model structure, HLMT is the aggregate representation of these
processes and their effect on housing construction.

Ad Hoc Computation

It sometimes happens that no unaggregated data are available that
correspond directly to the parameter being estimated. In the housing
example, this would happen if no information were available about the
ages of houses at demolition: However, other unaggregated data may
exist that describe the process of demolition, and these data may suffice
to infer an estimate of Eabocmmzm unit lifetime, HL. This is an ad hoc
computation used to estimate a parameter from unaggregate data.

For example, suppose the modeler walks through a district and
observes that of a fairly homogeneous mix of housing units of different
ages and types about one in a thousand is in the process of being
demolished. Suppose also that conversation with a wrecking crew reveals
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that it takes about three weeks to demolish a single building when
neighboring buildings are left intact. From this information, the fraction
of the housing stock demolished each year can be computed: it takes
three weeks to demolish a building, or {3/52) = .0577 years, Thus, if .00l
of the housing stock is observed to be in the process of demolition. and
if that rate of demolition continues for a whole year, the fraction of the
housing stock demolished each year is {.008/.0577y = 01733, This
fractional demolition rate {whose unit of measure is per year) is the
reciprocal of the housing unit lifetime, HL (whose unit of measure is
years). Thus HL is (1/.01733) or 57.7 years, which is not an unreasonable
estimate,

This example suggests that parameters can be estimated by ad hoc
computations based upon readily available unaggregate data. These
computations can take many forms; see Senge (1975). for example,

Pitfalls

The greatest single pitfall in using unaggregated data lies in formulating
a model structure and parameters that are aggregated to the point where
the processes characterized by the parameter values cannot be reliably
observed. As a result the parameters have little real-life meaning, and to
estimate them, the estimator must draw conclusions based on a mental
model of the behavior of the system. rather than simply reporting
- observations. For example, in the housing model a variety of processes
. determine how long it takes the system to make a transition from growth
~to full land occupancy—incentives to construct housing, supply and
demand effects in the land market, and housing depreciation, for
instance. In the model, several parameters characterize such diverse
processes. An alternative formulation of the mode! might have contained
a single parameter that specified the time constant for the transition from
.. growth to equilibrium. Urban experts may well be willing to estimate
- such a quantity, but the estimate would be a conclusion or opinion drawn
from their mental models of how the cities behave, rather than a report
on a single cause and effect relation within the city.

~ Another instance of confusing conclusions with observations might
occur if the simple housing mode! described here is expanded to include
démand for housing arising from the size of a population, but expanded
_improperly. A properly disaggregated way of modeling demand is to
_tepresent explicitly the growth of population and its response to housing
availability. But the modeler may be tempted to simplify and aggregate
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the model structure, perhaps by attempting to represent the influence of
population with a relationship that stimulates housing construction, HC,
when the stock of housing units, H, has grown slowly (representing
growth of population faster than housing and thus an increase in
demand). Similarly, such a relationship might retard housing construc-
tion, HC, when housing units, H, has grown rapidily {representing
overexpansion of the housing stock relative to the population and thus a
slackening of demand). During times of moderate growth, this rela-
tionship wouid have a neutral effect on HC, representing the assumption
that people could be found to occupy the houses; implicitly, the
population growth would keep pace with the growth in housing.

What are plausible values for the parameters in this formulation? What
Is “moderate growth™ relative to the speed of population movements?
What should the magnitude of the effect of rapid growth on HC be?
These questions cannot be answered by first-hand observations of cause
and effect relationships; the questions call for conclusions based on
mental models of the dynamics of the city. Can the modeler predict from
intuition alone and characterize with one delay and one table function
the dynamic interactions among housing and population, incorporating
births, deaths, incentives for migration, family formation, or the ability
of construction companies to expand? If not, the model is too aggregated
for parameters to be estimated reliably from the unaggregate data.

Two possible actions can be taken when the parameters of a model are
too aggregated to be set reliably from available unaggregate data. One
course is to use another estimation technique (usually a statistical
technique) and data at the level of aggregation of model structure. It
seems unwise, however, to attempt to estimate a simple relationship if the
actual system is so compiex that expert opinion is unreliable. A prefer-
able course of action is to restructure (usually disaggregate) the model so
that its parameters correspond directly to observable, unchanging char-
acteristics of the system. The disaggregation usually involves not only
subdivision of levels into more levels, but also explicit addition of
feedback loops that control the levels. For example, consider the
refationship between land availability and urban housing construction
discussed at the beginning of this section. Mass (1974) and Miller (1975)
disaggregate this relationship to portray the details of land pricing,
speculation, rezoning, and land use.

In summary, unaggregate data are by far the most abundant source of
information. There is a wide range of specific estimation techniques

H
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extending from direct observation to ad hoe computations based on
direct observation, Of particular interest js the problem of estimating the
parameters of a table function. This problem can be reduced to the
subproblems of estimating extreme values and slopes, specifying the
normal point, and drawing a smooth curve through the extreme and
normal points. The main pitfall in estimation with unaggregate data is
formulating an equation and its parameters in an aggregate, simplified
manner, so that participants in the system cannot reliably observe a value
of the parameter as a characteristic of the real system.

7.3 Estimation Using a Model Equation

A model equation and its parameters specify a refationship between two
or more variables. Estimation using a model equation starts with
statistics that aggregate individual items or cvents that correspond to
model variables. From such data the modeler derives the parameter
values that enable the model equation to match the “real” relation
between the variables. Estimation using a model equation encompasses
all single-equation regression techniques. Theil {1971) offers a general
treatment of regression techniques. Hamilton {(chapter 8) and Mass and
Senge (chapter 10) discuss the application of these techniques to system
dynamics models.

For an example of estimation using a model equation. consider that
the housing model calculates the rate of housing demolition, HD, as the
number of houses, H, divided by the average housing unit lifetime, HL.

Thus, if data are available for HD and H, HL can be estimated from the
model equation:

HD.X = HK/HL

HL = H/HD.

Estimation using a model equation is less frequent in system dynamics
studies than estimation from unaggregate data. Nevertheless, two forms

of model-equation estimation—one involving conversion factors, the
other fractional rates of flow—have been useful in many studies and are

~.therefore discussed here,

Conversion Factors

Many model parameters are conversion fact

- ors: they convert quantities
from one dimension to another. For exam

ple, land per house, LPH,
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converts housing units to an equivalent number of acres. Equation (4)
uses LPH in the definition of land fraction occupied, LFO:

LFO.K={HO.K*LPH} /ARED 4, &
LPH=0,1 4.1, ¢
AREA=5000 _ 4.2, C

LEO - LAND FRBCTION OCCUPIED (DIMENSIONLESS)

g - HOUSES (HOUSES)

Lby - LAND PER HQOUSING UNIT (ACRES/HOUSE)

LRER - LAND AREA (BCRES)

These equations can be manipulated to compute the parameter as a
function of the real data, in this case, the real LFO, H, and AREA:

LPH = LFO * AREA/H.

Estimating conversion factors offers a straightforward means of
ensuring that the absolute magnitudes of model variables are realistic.
Schroeder and Strongman (1974) show how real data were used to
estimate conversion factors for a model of Lowell, Massachusetts. That
model exhibits realistic magnitudes for population, housing, and
employment.

Normal Fractional Rates of Flow

Equation (2) defines the rate of housing construction, HC, in terms of a
level (houses, H), a normal fractional rate of flow (the housing construc-
tion normal, HCN), and a dimensionless multiplier {the housing-land
multiplier, HEM), This format

rate = level * normal fraction * multipliers

is widely used (Alfeld and Graham, 1976, pp. 123-126, provides further
discussion). One reason is that the multiplier can easily be estimated
when it is normalized around 1.0 (see section 7.2). This format also
facilitates the estimation of the normal fraction:

normal fraction = rate/(level * muitipliers)

Under normal conditions (however defined), the muitipliers, by defini-
tion, assume values of 1.0. So the normal fractional flow rate can be
computed by dividing the observed rate by the observed level, both
measured during a period of normal conditions. For example, suppose
that the year 1960 is defined as the normal period for the urban area
being modeled. Then, if the data are available, a value for housing
construction normal, HCN, is obtained from the number of housing
units constructed in the area during 1960 divided by the number of
housing units in the area in 1960.

- modeler must be aware of exactly what is and is not counted t

- shortage of land suppresses further housing construction. Because

: divided by the actual number of houses,
- for the housing construction normal,
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Pitfalls

Data at the level of aggregation of model variables must be collected for
specific purposes. This fact may be a pitfall when data are collected for
purposes different from those of the model. The completeness of a set of
variables, the definition of the aggregated variables, or the time frame
may render data unsuitable for estimating parameters using a model
equation.

For example, the definition of the collected data may be inconsistent
with model definitions. The housing-land multiplier, HLM, is defined so
that housing construction is impossible when land fraction occupied,
LFO, equals 1.0. Thus LFO must reach 1.0 when the arez has all the
housing it can hold. This means that land per house, LPH, must include
not only the land directly beneath each housing unit but also the adjacent
land for yards, sidewalks, driveways, roads, schools, and stores. Theland
per house, LPH, for a particular area could be calculated from the land
area zoned for residential use (minus the area of vacant fots) divided by
the number of dwelling units within the area. However, land in many
cities is zoned for both residential and commercial use; some fraction of
that land must be included in the residential land area as well. So the
o form a
particular piece of data, and whether that definition is consistent with the
way corresponding guantities are used in the model.

Another difficulty with inappropriate data occured in an attempted
revision of Forrester’s (1969) urban mode! by Babcock (1970). Babcock

. set the normal constants with data on levels and rates of flow, but not

with data only for the normal period; data for cities near equi

were used also. The simple housing model presented here can sho
happened as a result. The housing model reaches
period of growth in the

librium
w what
equilibrium after a
housing stock: the housing stock grows until a
the
and
well
ousing construction, HC , is
H_, to obtain a computed value
HCN_. Assuming the model
equilibrium data to compute

normal conditions in the model are growth conditions, the housing-}
multiplier, HLM, must suppress housing construction by going
below 1.0. Suppose the actual rate of h

equations are accurate, but using actual
HCN:

H H

a a

HON = HC, _ HrHCNsHLM,

= HCNHLM .
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Since HLM < 1 in equilibrium, then
HCN < HCN .

The computed value of HCN, if used jnstead of the actual value, reduces
the model’s impetus to grow, and thus reduces the extent to which HLM
must drop to bring the mode] into equilibrium. Similarly Forrester (1969)
holds that growth ceases when land shortage and unfavorable internal
conditions (principally a job shortage and predominance of lower-
income groups) depress construction. Using data from near-equilibrium
to compute normal fractions considerably reduces the extent to which
internal conditions in the model must decline to halt growth. In fact, the

model will no longer reproduce and account for depressed urban

conditions. Babcock’s re-estimated model therefore no longer fulfills its

purpose, merely because the implicit assumptions used in parameter
setting are violated.

The pitfall then in estimating parameters with data at the level of
aggregation of model variables is that the computations require two
assurmptions: accuracy of an equation and appropriateness of the data.
Such assumptions always constitute “more rope to hang yourself with.”

7.4 Estimation Using Muttiple Equations

As just described, estimation using a model equation consists of manipu-
fating the equation to compute a Um.:,mﬁﬁmu value. By contrast, esti-
mation using multiple equations consists of manipulating several equa-
tions to compute a parameter value. Both techniques use data at the level
of aggregation of model variables. The two techniques are distinguished
here because they are usually distinct in practice. Usually either one
equation is used analytically or all equations are used in simulations
Also, the pitfalis tend to be rather different.

Far example, the housing construction normal, HCN, can be esti-
mated by finding the value of HCN that causes housing growth to fit the
observed rate of growth, This estimation would use all the equations. The
fitting could be performed either with repeated simulations or, if
possible, by a computation. For an example of such a computation,
suppose that the stock of housing grows at 5.5 percent per year under
normal conditions. Also suppose that, from observation of housing
demolition, the housing unit lifetime, HIL, is estimated to be 66 years—
that is, 1/66 of the houses are demolished each year. 1f the model
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equations and the parameter HL are assumed to be correct, then the
housing construction normal, HCN, must exceed 1/66 by 0.035 to
produce the observed rate of growth during the normal period. Therefore
HCN can be inferred to be 1/66 + 0,055 = 0.07. Although this computa-
tion uses all of the model equations, it can be performed simply because
the model is very simple; more complex models usually require more
elaborate numerical computations.

For another example, suppose a real system exhibits fluctuations of
some specific period. The modeler can choose the magnitudes of time
constants of the system so as to produce oscillations near the reai period.
Forrester (1968, ch. 10) derives a simple rule of thumb: for a second-
order undamped system with two time constants T, and T,. their
geometric average approximately equals the period divided by 27

VT,T,=P/2r.

Just as the estimation using one model equation subsumes single-
cquation regression, so estimation using multiple equations subsumes a
family of statistical techniques. The most general technique is full-
information maximum likelihood (FIM L) estimation. Unfortunately, for
nontrivial problems FIML usually requires extravagant computation
time. Therefore two families of less general techniques have evolved. One
family usually requires linear formulations, and information on ex-
ogenous variables that is both complete and accurate. These are the
multiple-equation regressions (Theil, 1971, ch. 9-10). They are much
more efficient computationally than FIML. The other family of tech-
niques restrict the models to be dynamic (nonsimultaneous) and only
mildly nonlinear. These are the full-information maximum likelikood via
optimal filtering (FIMLOF) techniques derived from control theory
(Schweppe, 1973). Although they require significant computation, they
offer conceptual simplicity as well as estimating nonlinear dynamic
models with flawed information on only a subset of model variables
(Peterson, 19753; see also chapter 11 in this volume). Software is available
commercially for doing FIMLOF estimations with system dynamics
models (Peterson and Schweppe, 1974).

The general pitfall of multiple-equation estimations is the same as for

_single-equation estimations: the techniques assume the accuracy of the

equation(s) and the data. The implicit assumption that most often
thwarts multiple-equation estimation is that the discrepancy between real
behavior and model behavior is due to the values of the parameters being
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estimated. In other words, the discrepancy can be misattributed. In the
oscillation example cited above, if T, is inaccurate, and 7T, is being
estimated , the estimate of T, will also be inaccurate as well in order that
V' T\T, = P/2w. A subtle type of misattribution sometimes occurs during
model testing: if the model exhibits unrealistic behavior, the modeler
changes a parameter to eliminate the unrealistic behavior. Thus the
parameter has been estimated in the sense that its value has been chosen
to allow the model equations to generate behavior that matches observed
behavior. The problem is that the unrealistic behavior of the model may
have been due not to the inappropriate parameter value but to an
unrealistic formulation or to some other parameter value being awry. To
attribute the unrealistic behavior to the original value of the altered
parameter may indeed produce the right behavior but for the WIOng
reasons.

Another pitfali of both single-equation and multiple-equation parame-
ter estimation arises from their use of data at the level of aggregation of
model variables. To varying extents, both techniques force magnitudes of
model variables and the relationships among them to conform to the
magnitudes and relationships in the data. The forced conformity of some
aspect of behavior to real data preempts the comparison of behavior to
data as a wvalidity test. For example, if the modeler estimates model
parameters from data (at the level of aggregation of model variables) for
housing units, housing construction, housing demolition, and land
occupancy, the model is likely to replicate the overall behavior of the
housing stock. But confidence in the model would be greater if the
parameter estimation used unaggregate data and still resulted in a model
that replicates aggregate behavior. In other words, if the model replicates
real behavior when it doesn’t have to, the replication is another basis for
confidence in the model. Estimations from data at the level of agprega-
tion of model variables hinders the modeler in using such a validity test.

One way to circumvent this pitfall, if there are enough aggregate data,
is to follow the common econometric practice of using only part of the
data from estimation and the rest for validation (Theil, 1971, pp.
603-604). This strategy is sometimes unworkable when not enough data
exist, or if model equations are not general enough to replicate more than
one set of data. The other way to avoid the pitfall is to use unaggregate

data to estimate parameters and reserve aggregate data for validation; the

latter strategy is commonly followed in system dynamics studies.
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7.5 Conclusions

Three general categories of parameter estimation technigues have been
presented. Estimation using data below the level of aggregation of model
variables relies on observations of individual items or events that are
represented in the aggregate by model variables. The principle pitfall of
this technique is structuring the model on a level of aggregation too high
to allow observers within the system to reliably translate their experiences
into parameter values. .

The two other techniques are estimation using a single model equation
and estimation using several or all model equations. Both techniques
assume the correctness of the given equation(s); they use the equation(s)
to infer parameter values from data corresponding to model variables.
These techniques share pitfalls. First, use of data at the level of
aggregation of model variables diminishes the ability to validate. Second,
these techniques are vulnerable to systematic errors when assumptions
are violated. Econometricians encounter this pitfall in estimating
simultaneous-equation models. Even though multipie-equation methods
theoretically deliver greater accuracy than multiple applications of a
single-equation method, the multiple-equation methods are more sensi-
tive to minor violations of assumptions {less robust}) than single-equation
methods (Theil, 1971, p. 552). Similarly, parameter estimation from data
at the level of aggregation of model variables is less robust than
parameter estimation from data below the level of aggregation,

How should the modeler choose among the three techniques? As a
point of departure, the modeler need not faver the equation-based
techniques over the use of unaggregate data on the basis of accuracy.
Senge (1978) shows that estimation from unaggregate data can be as
accurate as other techniques. Moreover, the pitfalls or limitations of the
three estimation techniques are only one consideration in choosing
among them. The appropriateness of a given technique also depends on
the context of the model-building effort, most notably on how the model
variables have been selected, and how the model will be tested.

Variables may be selected by several criteria. Variables selected on the
basis of their ability to contribute to point-predictive accuracy suggest
the use of aggregate data and highly agpregated relationships. By
contrast, variables in system dynamics studies are usually chosen because

- they can reproduce the causes of the problem being analyzed, and

because they can be recognized and validated by participants in the
system being modeled. These considerations favor the use of variables at
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a level of aggregation close to that observable by individuals, without
regard to whether or not statistics are available. Goals and psychological
pressures are seldom measured but can be central in the models
description of why problems arise. Thus a typical system dynamics model
is formulated in a way that makes estimation from unaggregate data
reliable and that circumvents the pitfail of highly aggregated, un-
observable relationships.

What tests must the model pass for it to fulfill its purpose? If the tests
concentrate on the ability of the model to predict future values, then the
parameter estimation techniques used must emphasize making the model
variables fit aggresate data. However, the situation is different in most
system dynamics studies. The ultimate aim is to predict the qualitative
results of a policy change. Such predictions are difficult or impossible to
evaluate guantitatively and directly. Instead, system dynamics studies
tend to use a broad array of tests of structure, behavior, and policy
impact (Forrester and Senge, 1978). Many of these tests do not depend
on having data at the level of aggregation of model variables; hence the
modeler can be flexible in choosing a parameter estimation technique.
Specifically, by setting parameters from unaggregate data, the modeler
can reserve any aggregate data for the purpose of validity testing—
comparing model behavior to real behavior. This reservation of data is
analogous to the common econometric practice of estimating parameters
from data from one time interval, and testing the results with data from
another time interval.

A final aspect of the relation between parameter estimation and model
testing concerns sensitivity assessment: much of the simulation in a
typical system dynamics study aims at identifying the equations and the
parameters that are central in producing the behavior and policy resuits.
In a model of realistic detail, only a few parameters can alter the outcome
of the model if they are changed. (Graham, 1978, details the process of
identifying and dealing with sensitive parameters.) Thus it is common
practice to set parameters on the basis of information at hand {usually
unaggregate data) and defer intensive data collection and parameter
estimation until model testing reveals the parameters that require such
measuyes. ,

What techniques should the modeler use to estimate the parameters of
a model? The estimation techniques should facilitate, and be facilitated
by, the other phases of the modeling effort: the model should be
formulated in such a way as to avoid the pitfalls or limitations of the
estimation techniques. The model testing should guide estimation efforts.
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And information should be used in estimating in a way that faciljtates
validation. These considerations are reflected in the following ensemble
of recommended system dynamics practices:

l. Use a model structure that is detailed and realistic enough to aliow
participants in the system to supply data below the level of aggregation
of model variables.

2. Whenever possible, estimate parameters with data below the level of
aggregation of model variables and reserve data at the level of model
variables for validity testing.

3. Use techniques based on model equations only as secondary tech-
niques since they are vulnerable to systematic error.

4. Use simulation to identify the equations and parameter values that are

. critical to the outcome of the modeling effort and focus subsequent
- efforts on those equations and parameters.
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