Cyber-Physical Systems

Discrete Dynamics
IECE 553/453- Fall 2022 Prof. Dola Saha

Discrete Systems

$>$ Discrete $=$ "individually separate $/$ distinct"
$>$ A discrete system is one that operates in a sequence of discrete steps or has signals taking discrete values.
$>$ It is said to have discrete dynamics.
$>$ A discrete event occurs at an instant of time rather than over time.

Discrete Systems: Example

$>$ Count the number of cars that are present in a parking garage by sensing cars enter and leave the garage. Show this count on a display.

Discrete Systems

- Example: count the number of cars in a parking garage by sensing those that enter and leave:

ArrivalDetector

Discrete Systems

$>$ Example: count the number of cars that enter and leave a parking garage:

> Pure signal: up: $\mathbb{R} \rightarrow\{$ absent,present $\}$

- Carries no value, information is being present or absent
$>$ at any time $t \in R$, the input $u p(t)$ is
- either absent, meaning that there is no event at that time,
- or present, meaning that there is.

Discrete Systems

$>$ Example: count the number of cars that enter and leave a parking garage:

ArrivalDetector

$>$ Pure signal: up: $\mathbb{R} \rightarrow\{$ absent,present $\}$
$>$ Discrete actor: Counter: $(\mathbb{R} \rightarrow\{\text { absent,present }\})^{P} \rightarrow(\mathbb{R} \rightarrow\{$ absent $\} \cup \mathbb{N})$

$$
P=\{u p, d o w n\}
$$

Demonstration of Ptolemy II Model

Actor Modeling Languages

> LabVIEW
 > Simulink

> Scade

$>$ Reactors
> StreamIT

Reaction / Transition

For any $t \in \mathbb{R}$ where $u p(t) \neq a b s e n t$ or down $(t) \neq a b s e n t$ the Counter reacts. It produces an output value in \mathbb{N} and changes its internal state.

State: condition of the system at a particular point in time

- Encodes everything about the past that influences the system's reaction to current input

Inputs and Outputs at a Reaction

For $t \in \mathbb{R}$ the inputs are in a set

$$
\text { Inputs }=(\{\text { up, down }\} \rightarrow\{\text { absent }, \text { present }\})
$$

and the outputs are in a set

$$
\text { Outputs }=(\{\text { count }\} \rightarrow\{\text { absent }\} \cup \mathbb{N}),
$$

ArrivalDetector

Question

> What are some scenarios that the given parking garage (interface) design does not handle well?

For $t \in \mathbb{R}$ the inputs are in a set

$$
\text { Inputs }=(\{\text { up, down }\} \rightarrow\{\text { absent,present }\})
$$

and the outputs are in a set

$$
\text { Outputs }=(\{\text { count }\} \rightarrow\{\text { absent }\} \cup \mathbb{N}),
$$

ArrivalDetector

State Space

A practical parking garage has a finite number M of spaces, so the state space for the counter is

$$
\text { States }=\{0,1,2, \cdots, M\} .
$$

ArrivalDetector

Finite State Machine (FSM)

\Rightarrow A state machine is a model of a system with discrete dynamics

- at each reaction maps inputs to outputs
- Map may depend on current state
$>$ An FSM is a state machine where the set States is finite. \quad States $=\{$ State1, State2, State3 $\}$

FSM Notation

Input declarations, Output declarations, Extended state declarations

The guard determines whether the transition may be taken on a reaction.

The action specifies what outputs are produced on each reaction.

Examples of Guards for Pure Signals

true Transition is always enabled.
p_{1}
$\neg p_{1}$
$p_{1} \wedge p_{2}$
$p_{1} \vee p_{2}$
$p_{1} \wedge \neg p_{2}$ Transition is enabled if p_{1} is present. Transition is enabled if p_{1} is absent. Transition is enabled if both p_{1} and p_{2} are present. Transition is enabled if either p_{1} or p_{2} is present. Transition is enabled if p_{1} is present and p_{2} is absent.

Guards for Signals

p_{3}	Transition is enabled if p_{3} is present (not absent).
$p_{3}=1$	Transition is enabled if p_{3} is present and has value 1.
$p_{3}=1 \wedge p_{1}$	Transition is enabled if p_{3} has value 1 and p_{1} is present.
$p_{3}>5$	Transition is enabled if p_{3} is present with value greater than 5.

Garage Counter FSM

Guard $g \subseteq$ Inputs is specified using the shorthand

$$
\text { up } \wedge \neg d o w n
$$

which means

$$
g=\{\{u p\}\} .
$$

$$
\text { Inputs(up) }=\text { present and Inputs(down) }=\text { absent }
$$

Ptolemy II Model

FSM Modeling Languages / Frameworks

- LabVIEW Statecharts
- Simulink Stateflow
- Scade

Garage Counter Mathematical Model

Formally: (States,Inputs, Outputs, update, initialState), where

- States $=\{0,1, \cdots, M\}$
- Inputs $=(\{$ up, down $\} \rightarrow\{$ absent, present $\}$
- Outputs $=(\{$ count $\} \rightarrow\{$ absent $\} \cup \mathbb{N})$
- update : States \times Inputs \rightarrow States \times Outputs
- initialState $=0$

The update function is given by

$$
\text { update }(s, i)=\left\{\begin{aligned}
(s+1, s+1) & \text { if } s<M \\
& \wedge i(u p)=\text { present } \\
& \wedge i(\text { down })=\text { absent } \\
(s-1, s-1) & \text { if } s>0 \\
& \wedge i(u p)=\text { absent } \\
& \wedge i(\text { down })=\text { present } \\
& \text { otherwise }
\end{aligned}\right.
$$

FSM: Definitions

$>$ Stuttering: (possibly implicit) default transition that is enabled

- when inputs are absent it does not change state and produces absent outputs.
$>$ Deterministic (given the same inputs it will always produce the same outputs)
- if, for each state, there is at most one transition enabled by each input value.
- formal definition of an FSM ensures that it is deterministic, since update is a function.
$>$ Receptive (ensures that a state machine is always ready to react to any input, and does not "get stuck" in any state)
- if, for each state, there is at least one transition possible on each input symbol.
- formal definition of an FSM ensures that it is receptive, since update is a function, not a partial function.

Extended State Machine

$>$ augments the FSM model with variables that may be read and written as part of taking a transition between states
variable: $c:\{0, \cdots, M\}$
inputs: up, down: pure output: count: $\{0, \cdots, M\}$

Example of Thermostat

When does a reaction occur?

$>$ Suppose all inputs are discrete and a reaction occurs when any input is present. Then the below transition will be taken whenever the current state is s 1 and x is present.
$>$ This is an event input: $x \in\{$ present,absent $\}$ output: $y \in\{$ present,absent $\}$

When does a reaction occur?

$>$ Suppose x and y are discrete and pure signals. When does the transition occur?

```
input: }x\in{\mathrm{ present,absent }
output: }y\in{\mathrm{ present,absent}
```


Answer: when the environment triggers a reaction and x is absent. If this is a (complete) event-triggered model, then the transition will never be taken because the reaction will only occur when x is present!

When does a reaction occur?

$>$ Suppose all inputs are discrete and a reaction occurs on the tick of an external clock.
$>$ This is a time-triggered model.
input: $x \in\{$ present,absent $\}$
input: $x \in\{$ present,absent $\}$
output: $y \in\{$ present,absent $\}$

Extended FSM of traffic light

variable: count: $\{0, \cdots, 60\}$

Reacts at regular intervals (1 sec)

inputs: pedestrian: pure
outputs: $\operatorname{sigR}, \operatorname{sig} G, \operatorname{sig} Y$: pure

$$
\begin{gathered}
\text { count }<60 / \\
\text { count }:=\text { count }+1
\end{gathered}
$$

More Notation: Default Transitions

$>$ A default transition is enabled if it either has no guard or the guard evaluates to true. When is the below default transition enabled?

Default Transitions

> Example: Traffic Light Controller

FSM State Transition Table

State-transition table
(S: state, I: input, O: output)

Current state	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	\cdots	I_{n}
$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathrm{i}} / \mathrm{O}_{\mathrm{x}}$	$\mathrm{S}_{\mathrm{j}} / \mathrm{O}_{\mathrm{y}}$	\cdots	$\mathrm{S}_{\mathrm{k}} / \mathrm{O}_{\mathrm{z}}$
$\mathrm{S}_{\mathbf{2}}$	$\mathrm{S}_{\mathrm{i}^{\prime}} / \mathrm{O}_{\mathrm{x}^{\prime}}$	$\mathrm{S}_{\mathrm{j}^{\prime} / \mathrm{O}_{\mathrm{y}^{\prime}}}$	\ldots	$\mathrm{S}_{\mathrm{k}^{\prime}} / \mathrm{O}_{\mathrm{z}^{\prime}}$
\ldots	\ldots	\ldots	\ldots	\ldots
$\mathbf{S}_{\mathbf{m}}$	$\mathrm{S}_{\mathrm{i}^{\prime \prime}} / \mathrm{O}_{\mathrm{x}^{\prime \prime}}$	$\mathrm{S}_{\mathrm{j}^{\prime \prime}} / \mathrm{O}_{\mathrm{z}^{\prime \prime}}$	\ldots	$\mathrm{S}_{\mathrm{k}^{\prime \prime}} / \mathrm{O}_{\mathrm{z}^{\prime \prime}}$

State-transition table
(S: state, I: input, O: output, - : illegal)

Next state	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	\cdots	$\mathbf{S}_{\mathbf{m}}$
$\mathbf{C u r r e n t ~ s t a t e ~}^{\mathbf{S}_{\mathbf{1}}}$	$\mathrm{I}_{\mathrm{i}} / \mathrm{O}_{\mathbf{x}}$	-	\cdots	-
$\mathbf{S}_{\mathbf{2}}$	-	-	\ldots	$\mathrm{I}_{\mathrm{j}} / \mathrm{O}_{\mathrm{y}}$
\ldots	\ldots	\ldots	\cdots	\cdots
$\mathbf{S}_{\mathbf{m}}$	-	$\mathrm{I}_{\mathrm{k}} / \mathrm{O}_{\mathbf{z}}$	\cdots	-

Example FSM: Detect "001"

$\mathrm{S}(\mathrm{t}) \times \mathrm{x}$	0	1
S 0	$\mathrm{~S} 1,0$	$\mathrm{~S} 0,0$
S 1	$\mathrm{~S} 2,0$	$\mathrm{~S} 0,0$
S 2	$\mathrm{~S} 2,0$	$\mathrm{~S} 0,1$

```
#define IDLE 0
#define SEATED 1
#define BELTED 2
#define BUZZER 3
switch (state) { /* check the current state */
    case IDLE:
        if (seat) { state = SEATED; timer_on = TRUE; }
        /* default case is self-loop */
        break;
    case SEATED:
        if (belt) state = BELTED; /* won't hear the
                buzzer */
        else if (timer) state = BUZZER; /* didn't put on
                belt in time */
        /* default is self-loop */
        break;
    case BELTED:
        if (!seat) state = IDLE; /* person left */
        else if (!belt) state = SEATED; /* person still
                        in seat */
        break;
    case BUZZER:
        if (belt) state = BELTED; /* belt is on-turn off
        buzzer */
        else if (!seat) state = IDLE; /* no one in
        seat-turn off buzzer */
    break;
```


Example FSM: Recognize "1101"

FSM that accepts "UAlbany"

FSM that detects "CAT" or "DOG"

FSM that detects "CYBER"

