Cyber-Physical Systems

Modeling Physical Dynamiticsur

IECE 553/453, ICSI 553 - Fall 2022 Prof. Dola Saha

Modeling Techniques

> Models that are abstractions of system dynamics (how system behavior changes over time)

- Modeling physical phenomena - differential equations
- Feedback control systems - time-domain modeling
- Modeling modal behavior - FSMs, hybrid automata, ...
- Modeling sensors and actuators - calibration, noise, ...
- Hardware and software - concurrency, timing, power, ...
- Networks - latencies, error rates, packet losses, ...

Modeling of Continuous Dynamics

> Ordinary differential equations, Laplace transforms, feedback control models, ...

Example CPS System

>Helicopter Dynamics

Modeling Physical Motion

$>$ Six Degrees of Freedom

- Position: x, y, z
- Orientation: roll $\left(\theta_{x}\right)$, yaw $\left(\theta_{y}\right)$, pitch $\left(\theta_{z}\right)$

Notation

Position is given by three functions:

$$
\begin{aligned}
& x: \mathbb{R} \rightarrow \mathbb{R} \\
& y: \mathbb{R} \rightarrow \mathbb{R} \\
& z: \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

Orientation can be represented in the same form

where the domain \mathbb{R} represents time and the co-domain (range) \mathbb{R} represents position along the axis. Collecting into a vector:

$$
\mathrm{x}: \mathbb{R} \rightarrow \mathbb{R}^{3}
$$

Position at time $t \in \mathbb{R}$ is $\mathbf{x}(t) \in \mathbb{R}^{3}$.
$>$ Functions of this form are known as continuous-time signals

Notation

Velocity

$$
\dot{\mathrm{x}}: \mathbb{R} \rightarrow \mathbb{R}^{3}
$$

is the derivative, $\forall t \in \mathbb{R}$,

$$
\dot{\mathbf{x}}(t)=\frac{d}{d t} \mathbf{x}(t)
$$

Acceleration $\ddot{\mathrm{x}}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is the second derivative,

$$
\ddot{\mathbf{x}}=\frac{d^{2}}{d t^{2}} \mathbf{x}
$$

Force on an object is $\mathbf{F}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.

Newton's Second Law

Newton's second law states $\forall t \in \mathbb{R}$,

$$
\mathbf{F}(t)=M \ddot{\mathbf{x}}(t)
$$

where M is the mass. To account for initial position and velocity, convert this to an integral equation

$$
\begin{aligned}
\mathbf{x}(t) & =\mathbf{x}(0)+\int_{0}^{t} \dot{\mathbf{x}}(\tau) d \tau \\
& =\mathbf{x}(0)+t \dot{\mathbf{x}}(0)+\frac{1}{M} \int_{0}^{t} \int_{0}^{\tau} \mathbf{F}(\alpha) d \alpha d \tau
\end{aligned}
$$

Orientation

- Orientation: $\theta: \mathbb{R} \rightarrow \mathbb{R}^{3}$
- Angular velocity: $\dot{\theta}: \mathbb{R} \rightarrow \mathbb{R}^{3}$
- Angular acceleration: $\ddot{\theta}: \mathbb{R} \rightarrow \mathbb{R}^{3}$
- Torque: $\mathbf{T}: \mathbb{R} \rightarrow \mathbb{R}^{3}$

$$
\theta(t)=\left[\begin{array}{c}
\dot{\theta}_{x}(t) \\
\dot{\theta}_{y}(t) \\
\dot{\theta}_{z}(t)
\end{array}\right]=\left[\begin{array}{c}
\text { roll } \\
\text { yaw } \\
\text { pitch }
\end{array}\right]
$$

Torque: Angular version of Force

- radius of the arm: $r \in \mathbb{R}$
- force orthogonal to arm: $f \in \mathbb{R}$
- mass of the object: $m \in \mathbb{R}$

Just as force is a push or a pull, a torque is a twist.
Units: newton-meters/radian, Joules/radian

Rotational Version of Newton's Law

$$
\mathbf{T}(t)=\frac{d}{d t}(I(t) \dot{\theta}(t)),
$$

where $I(t)$ is a 3×3 matrix called the moment of inertia tensor.

$$
\left[\begin{array}{c}
T_{x}(t) \\
T_{y}(t) \\
T_{z}(t)
\end{array}\right]=\frac{d}{d t}\left(\left[\begin{array}{ccc}
I_{x x}(t) & I_{x y}(t) & I_{x z}(t) \\
I_{y x}(t) & I_{y y}(t) & I_{y z}(t) \\
I_{z x}(t) & I_{z y}(t) & I_{z z}(t)
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{x}(t) \\
\dot{\theta}_{y}(t) \\
\dot{\theta}_{z}(t)
\end{array}\right]\right)
$$

Here, for example, $T_{y}(t)$ is the net torque around the y axis (which would cause changes in yaw), $I_{y x}(t)$ is the inertia that determines how acceleration around the x axis is related to torque around the y axis.

If the object is spherical, this reluctance is the same around all axes, so it reduces to a constant scalar I (or equivalently, to a diagonal matrix I with equal diagonal elements I).

$$
\mathbf{T}(t)=I \ddot{\theta}(t)
$$

For a spherical object

Rotational velocity is the integral of acceleration,

$$
\begin{aligned}
\dot{\theta}(t) & =\dot{\theta}(0)+\int_{0}^{t} \ddot{\theta}(\tau) d \tau \\
\dot{\theta}(t) & =\dot{\theta}(0)+\frac{1}{I} \int_{0}^{t} \mathbf{T}(\tau) d \tau .
\end{aligned}
$$

Orientation is the integral of rotational velocity,

$$
\begin{aligned}
\theta(t) & =\theta(0)+\int_{0}^{t} \dot{\theta}(\tau) d \tau \\
& =\theta(0)+t \dot{\theta}(0)+\frac{1}{I} \int_{0}^{t} \int_{0}^{\tau} \mathbf{T}(\alpha) d \alpha d \tau
\end{aligned}
$$

Simplified Model

> Model-order Reduction
Yaw dynamics:

$$
T_{y}(t)=I_{y y} \ddot{\theta}_{y}(t)
$$

To account for initial angular velocity, write as

$$
\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau
$$

Simplified Model of Helicopter

$>$ the force produced by the tail rotor must counter the torque produced by the main rotor
> Assumptions:

- helicopter position is fixed at the origin
- helicopter remains vertical, so pitch and roll are fixed at zero
$>$ the moment of inertia reduces to a scalar that represents a torque that resists changes in yaw

$$
\ddot{\theta}_{y}(t)=T_{y}(t) / I_{y y} \dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau
$$

Feedback Control Problem

A helicopter without a tail rotor, like the one below, will spin uncontrollably due to the torque induced by friction in the rotor shaft.

Control system problem: Apply torque using the tail rotor to counterbalance the torque of the top rotor.

Actor Model

$>$ Mathematical Model of Concurrent Computation
$>$ Actor is an unit of computation

- Actors can
- Create more actors
- Send messages to other actors
- Designate what to do with the next message
> Multiple actors may execute at the same time

Actor Model of Systems

$>$ A system is a function that accepts an input signal and yields an output signal.
$>$ The domain and range of the system function are sets of signals, which themselves are functions.

$$
x: \mathbb{R} \rightarrow \mathbb{R}, \quad y: \mathbb{R} \rightarrow \mathbb{R}
$$

$>$ Parameters may affect the

$$
S: X \rightarrow Y
$$ definition of the function S.

$$
X=Y=(\mathbb{R} \rightarrow \mathbb{R})
$$

Actor Model of the Helicopter

> Input is the net torque of the tail rotor and the top rotor.
Output is the angular
 velocity around the y-axis.
> Parameters of the model are shown in the box. The input and output relation is given by the equation to the right.

$$
\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau
$$

Composition of Actor Model

$$
\text { Helicopter } \quad y=x^{\prime}
$$

$\forall t \in \mathbb{R}, \quad y(t)=a x(t)$

$$
y=a x
$$

$$
y^{\prime}(t)=i+\int_{0}^{t} x^{\prime}(\tau) d \tau
$$

$$
a=1 / I_{y y}
$$

$$
i=\dot{\theta}_{y}(0)
$$

Actor Models with Multiple Inputs

$$
S:(\mathbb{R} \rightarrow \mathbb{R})^{2} \rightarrow(\mathbb{R} \rightarrow \mathbb{R})
$$

$\forall t \in \mathbb{R}, \quad y(t)=x_{1}(t)+x_{2}(t)$
$\left(S\left(x_{1}, x_{2}\right)\right)(t)=y(t)=x_{1}(t)-x_{2}(t)$

Modern Actor Based Platforms

> Simulink (The MathWorks)
> Labview (National Instruments)
> Modelica (Linkoping)
> OPNET (Opnet Technologies)
> Polis \& Metropolis (UC Berkeley)
> Gabriel, Ptolemy, and Ptolemy II (UC Berkeley)
> OCP, open control platform (Boeing)
> GME, actor-oriented metamodeling (Vanderbilt)
> SPW, signal processing worksystem (Cadence)
> System studio (Synopsys)
> ROOM, real-time object-oriented modeling (Rational)
$>$ Easy5 (Boeing)
> Port-based objects (U of Maryland)
> I/O automata (MIT)
> VHDL, Verilog, SystemC (Various)

Example LabVIEW Screenshot

Example CPS System

> Artemis I

- Space Launch System (SLS) rocket
- Orion spacecraft
- Designed to send humans to deep space as the backbone for America's Moon to Mars exploration approach.

Escape Velocity

> Newton's law of universal gravitation

- gravitational force between two massive bodies is proportional to the product of the two masses
- inversely proportional to the square of the distance between them
- G is the gravitational constant

$$
F=-G \frac{M m}{(R+x)^{2}}
$$

- acceleration $g=F / m$ when $x=0$

$$
g=\frac{G M}{R^{2}}
$$

Escape Velocity

$$
\begin{aligned}
F=-G \frac{M m}{(R+x)^{2}} \\
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =-\frac{G M}{(R+x)^{2}} \\
& =-\frac{g}{(1+x / R)^{2}}
\end{aligned}
\end{aligned}
$$

$d^{2} x / d t^{2}=d v / d t$

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{d v}{d x} \frac{d x}{d t} \\
& =v \frac{d v}{d x}
\end{aligned}
$$

$$
v \frac{d v}{d x}=-\frac{g}{(1+x / R)^{2}}
$$

Escape Velocity

$$
\xrightarrow[M]{\int_{v_{0}}^{v} v d v}=-\frac{\underbrace{}_{m}}{\frac{m g R^{2}}{(R+x)^{2}}}
$$

$$
F=-G \frac{M m}{(R+x)^{2}} \quad g=\frac{G M}{R^{2}}
$$

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =-\frac{G M}{(R+x)^{2}} \\
& =-\frac{g}{(1+x / R)^{2}}
\end{aligned}
$$

$$
d^{2} x / d t^{2}=d v / d t
$$

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{d v}{d x} \frac{d x}{d t} \\
& =v \frac{d v}{d x}
\end{aligned}
$$

$$
v \frac{d v}{d x}=-\frac{g}{(1+x / R)^{2}}
$$

UNIVERSITYATALBANY

Left Integral: $\quad \frac{1}{2}\left(v^{2}-v_{0}^{2}\right)$

Substitute: $u=1+x / R, d u=d x / R$
Right Integral: $\int_{0}^{x} \frac{d x}{(1+x / R)^{2}}=R \int_{1}^{1+x / R} \frac{d u}{u^{2}}$

$$
\begin{aligned}
& \left.=-\frac{R}{u}\right]_{1}^{1+x / R} \\
& =R-\frac{R^{2}}{x+R} \\
& =\frac{R x}{x+R}
\end{aligned}
$$

$$
\frac{1}{2}\left(v^{2}-v_{0}^{2}\right)=-\frac{g R x}{x+R} \quad v^{2}=v_{0}^{2}-\frac{2 g R x}{x+R}
$$

Escape Velocity

> Escape Velocity: minimum initial velocity such that the mass can escape to infinity

$$
\begin{aligned}
& v_{0}=v_{\text {escape }} \text { when } v \rightarrow 0 \text { as } x \rightarrow \infty \\
& \qquad \begin{aligned}
v_{\text {escape }}^{2} & =\lim _{x \rightarrow \infty} \frac{2 g R x}{x+R} \\
& =2 g R .
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
R \approx 6350 \mathrm{~km} \quad g=127008 \mathrm{~km} / \mathrm{hr}^{2} . \\
v_{\text {escape }}=\sqrt{2 g R} \approx 40000 \mathrm{~km} / \mathrm{hr}
\end{gathered}
$$

