
1

Cyber-Physical Systems

Basic I/O with RPi
IECE 553/453, ICSI 553 – Fall 2022
Prof. Dola Saha

2

Embedded System
Ø Embedded computing system: any

device that includes a processing
system but is NOT a general-purpose
computer.

Ø Often application specific: takes
advantage of application characteristics
to optimize the design

Ø Might have real-time requirements
Ø Might be power constrained CPU

mem

input

output analog

analog

embedded
computer

3

Connecting Analog and Digital Worlds
ØCyber
§Digital
§Discrete in Time
§Sequential

ØPhysical
§Continuum
§Continuous in time
§Concurrent

4

Practical Issues
Ø Analog vs. digital
Ø Wired vs. wireless
Ø Serial vs. parallel
Ø Sampled or event triggered
Ø Bit rates
Ø Access control, security, authentication
Ø Physical connectors
Ø Electrical requirements (voltages and currents)

5

History of ARM Processor

6

ARM Cortex Processors
ARM Cortex-A family:
Applications processors
Support OS and high-performance
applications, such as smartphones, Smart TV
ARM Cortex-R family:
Real-time processors with high performance
and high reliability
Support real-time processing and mission-
critical control
ARM Cortex-M family:
Microcontroller, energy-efficient,
cost-sensitive, support SoC

7

Raspberry Pi – Know your board
Ø The Raspberry Pi 3 Model B+
§ Broadcom BCM2837B0, Cortex-

A53 (ARMv8) 64-bit SoC @
1.4GHz

§ 1GB LPDDR2 SDRAM
§ 2.4GHz and 5GHz IEEE

802.11.b/g/n/ac wireless LAN,
Bluetooth 4.2, BLE

§ Gigabit Ethernet over USB 2.0
(maximum throughput 300 Mbps)

§ Extended 40-pin GPIO header
§ Full-size HDMI

8

Raspberry Pi – Know your board
Ø The Raspberry Pi 3 Model B+
§ CSI camera port for connecting a

Raspberry Pi camera
§ DSI display port for connecting a

Raspberry Pi touchscreen display
§ 4-pole stereo output and composite

video port
§ Micro SD port for loading your

operating system and storing data
§ 5V/2.5A DC power input
§ Power-over-Ethernet (PoE) support

(requires separate PoE HAT)

9

CAUTION!!
Ø Do not shutdown the RPi by pulling the USB cable, use a

software shutdown procedure
Ø Do not place powered RPi on metal surfaces. If you short the

pins underneath the GPIO header, you can destroy the board
Ø Do not connect circuits that source/sink other than very low

currents
Ø The GPIO pins are 3.3V tolerant, not 5V
Ø Carefully check pin numbers, don’t short the GPIO pins

10

ARM Peripherals BCM2837 Manual

11

Address Mapping
Ø Addresses in ARM Linux are:
• issued as virtual addresses by the ARM core,
• mapped into a physical address by the ARM/MMU,
• mapped into a bus address by the ARM mapping

MMU,
• used to select the appropriate peripheral or location in

RAM.

12

GPIO Pins
Ø https://pinout.xyz

https://pinout.xyz/

13

Resistors and LEDs

14

Breadboard Connections

15

Dual In-Line Package or DIP

16

GPIO
Ø GPIO to

Breadboard
Interface Board

Ø GPIO Ribbon
Cable

Ø Breadboard

17

Convention

18

Circuit to Breadboard
Ø Use 3V

19

Circuit to Breadboard
Ø Use GPIO pin

20

sysfs – pseudo-filesystem
Ø The sysfs filesystem is a

pseudo-filesystem which
provides an interface to
kernel data structures.

Ø The files under sysfs
provide information about
devices, kernel modules,
filesystems, and other kernel
components.

21

Linux Kernel vs User Space
Ø The Linux kernel runs in an area of system memory called

the kernel space
Ø Regular user applications run in an area of system memory

called user space
Ø A hard boundary between these two spaces prevents
§ User applications from accessing memory and resources required by the

Linux kernel
§ Linux kernel from crashing due to badly written user code
§ Interfering one user’s applications with another
§ Provides a degree of security.

22

sysfs
Ø Paths in sysfs (/sys/class/gpio)
§ Control interfaces used to get userspace control over GPIOs
o export
o unexport

§ GPIOs themselves
§ GPIO controllers ("gpiochip" instances)

Ø GPIO signals have paths like /sys/class/gpio/gpioN/
§ "direction" - reads as either "in" or "out”
§ "value" - reads as either 0 (low) or 1 (high)
§ "edge" - reads as either "none", "rising", "falling", or "both”
§ "active_low" - reads as either 0 (false) or 1 (true)

23

Steps to perform I/O using sysfs
Ø Export the pin.
Ø Set the pin direction (input or output).
Ø If an output pin, set the level to low or high.
Ø If an input pin, read the pin's level (low or high).
Ø When done, unexport the pin.

24

Exporting GPIO control to userspace
Ø "export"
§ Userspace may ask the kernel to export control of a GPIO to

userspace by writing its number to this file.
§ Example: "echo 19 > export" will create a "gpio19" node for

GPIO #19, if that's not requested by kernel code.

Ø "unexport"
§ Reverses the effect of exporting to userspace.
§ Example: "echo 19 > unexport" will remove a "gpio19" node

exported using the "export" file.

25

Control GPIO with Linux
Ø Become the sudo user
§ dsaha@sahaPi:~ $ sudo su

Ø Go to the GPIO folder and list the contents
§ root@sahaPi:/home/dsaha# cd /sys/class/gpio/
§ root@sahaPi:/sys/class/gpio# ls
§ export gpiochip0 gpiochip128 unexport

Ø Export gpio 4
§ root@sahaPi:/sys/class/gpio# echo 4 > export
§ root@sahaPi:/sys/class/gpio# ls
§ export gpio4 gpiochip0 gpiochip128 unexport

26

Control GPIO with Linux
Ø Go to the gpio4 folder and list contents
§ root@sahaPi:/sys/class/gpio# cd gpio4/
§ root@sahaPi:/sys/class/gpio/gpio4# ls
§ active_low device direction edge power subsystem uevent value

Ø Set direction (in or out) of pin
§ root@sahaPi:/sys/class/gpio/gpio4# echo out > direction

Ø Set value to be 1 to turn on the LED
§ root@sahaPi:/sys/class/gpio/gpio4# echo 1 > value

27

Control GPIO with Linux
Ø Set value to be 0 to turn off the LED
§ root@sahaPi:/sys/class/gpio/gpio4# echo 0 > value

Ø Check the status (direction and value) of the pin
§ root@sahaPi:/sys/class/gpio/gpio4# cat direction
§ out
§ root@sahaPi:/sys/class/gpio/gpio4# cat value
§ 0

28

Control GPIO with Linux
Ø Ready to give up the control? Get out of gpio4 folder and list

contents, which shows gpio4 folder
§ root@sahaPi:/sys/class/gpio/gpio4# cd ../
§ root@sahaPi:/sys/class/gpio# ls
§ export gpio4 gpiochip0 gpiochip128 unexport

Ø Unexport gpio 4 and list contents showing removal of gpio4
folder

§ root@sahaPi:/sys/class/gpio# echo 4 > unexport
§ root@sahaPi:/sys/class/gpio# ls
§ export gpiochip0 gpiochip128 unexport

29

Program
Ø Bash Script
§ exploringrpi/chp05/bashLED/bashLED

Ø Python Code
§ exploringrpi/chp05/pythonLED/python2LED.py

Ø C code
§ exploringrpi/chp05/makeLED/makeLED.c

30

C/C++
ADVANTAGES DISADVANTAGES
You can build code directly on the RPi or you can cross-compile code
using professional toolchains. Runtime environments do not need to be
installed.

Compiled code is not portable. Code compiled for your x86 desktop will
not run on the RPi ARM processor.

C++ has full support for procedural programming, OOP, and support for
generics through the use of STL (Standard Template Library).

Many consider the languages to be complex to master. There is a tendency
to need to know everything before you can do anything.

It gives the best computational performance, especially if optimized.
However, optimization can be difficult and can reduce the portability of
your code.

The use of pointers and the low-level control available makes code prone to
memory leaks. With careful coding these can be avoided and can lead to
efficiencies over dynamic memory management schemes.

Can be used for high-performance user-interface application development
on the RPi using third-party libraries. Libraries such as Qt and Boost
provide extensive additional libraries for components, networking, etc.

By default, C and C++ do not support graphical user interfaces, network
sockets, etc. Third-party libraries are required.

Offers low-level access to glibc for integrating with the Linux system.
Programs can be setuid to root.

Not suitable for scripting (there is a C shell, csh, that does have syntax like
C). You can integrate with Lua. Not ideal for web development either.

The Linux kernel is written in C and having knowledge of C/C++ can
help if you ever have to write device drivers or contribute to Linux kernel
development.

C++ attempts to span from low-level to high-level programming tasks, but
it can be difficult to write very scalable enterprise or web applications.

The C/C++ languages are ISO standards, not owned by a single company.

31

Building C/C++ Applications

32

Bash and Python Script

33

C Program

34

Use Rpi Library
Ø https://sourceforge.net/projects/raspberry-gpio-python/
Ø Note: Current release does not support SPI, I2C, 1-wire or

serial functionality on the RPi yet

https://sourceforge.net/projects/raspberry-gpio-python/

35

Use gpiozero Library
Ø https://gpiozero.readthedocs.io/en/stable/

https://gpiozero.readthedocs.io/en/stable/

36

GPIO as Input
Ø Push-button Switch

37

Reading GPIO

38

Wiring Pi
Ø http://wiringpi.com

39

WiringPi

40

The gpio Command (WiringPi)

41

wiringPi
Ø Functions

42

wiringPi Blink LED
http://wiringpi.com/examples/blink/
nano ~/WiringPi/examples/blink.c

gcc -Wall -o blink blink.c -lwiringPi
sudo ./blink

Compile and Run

43

Digital Input - Polling
Ø Continuously check the

status

44

Digital Input – Interrupt
1. The driver tells the controller

what to do by writing into its
device registers. The controller
then starts the device.

2. I/O signals the interrupt
controller chip using certain bus
lines.

3. It asserts a pin on the CPU chip
4. The interrupt controller puts the

number of the device on the bus

45

Interrupt Handler
Ø An interrupt

suspends the normal
sequence of
execution.

Ø When the interrupt
processing is
completed,
execution resumes

46

Button Press - Interrupt
Ø Register for the

Interrupt Service
Routine

Ø myISR()
Ø It is called when the

interrupt happens

47

Analog Output
Ø Pulse Width Modulation (PWM)
§ Technique that conforms a signal width, generally pulses
§ The general purpose is to control power delivery
§ The on-off behavior changes the average power of signal
§ Output signal alternates between on and off within a specified

period.
§ If signal toggles between on and off quicker than the load,

then the load is not affected by the toggling

48

PWM – Duty Cycle
Ø A measure of the time the modulated signal is in

its “high” state
Ø Generally recorded as the percentage of the signal

period where the signal is considered on

Period (T)

Duty
Cycle (D)VL

VH

On Off

49

Duty Cycle Formulation

%100´=
Period
TimeOnCycleDuty

() LHavg VDVDV ×-+×= 1

Duty Cycle is determined by:

*Average value of a signal
can be found as:

0

1 ()
T

y f t dt
T

= ò

*In general analysis, VL is taken as zero volts for simplicity.

Period (T)

Duty
Cycle (D)VL

VH

On Off

50

PWM Duty Cycle

51

PWM Mode
Ø Counter counts

up to the range
provided

Ø When the
counter value is
higher than set
value, output is
high

52

PWM Duty Cycle Calculation
Ø The PWM device on the RPi is clocked at a fixed base-clock

frequency of 19.2 MHz
Ø Integer divisor and range values are used to tailor the PWM

frequency according to application requirements
Ø 𝑓!"# = 19.2𝑀𝐻𝑧/(𝑑𝑖𝑣𝑖𝑠𝑜𝑟×𝑟𝑎𝑛𝑔𝑒)
Ø If 𝑓!"# is 10KHz (0.01MHz), and range is 128,
§ 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = !".$%&'

(!"#×*+,-.
= 15

Ø Smaller value in range results in poor resolution

53

PWM Controller
Ø Two independent output bit-streams, clocked at a

fixed frequency

54

PWM0 and PWM1 Map

55

exploringPi/chp06/wiringPi/pwm.cpp

