
Deep Learning in Wireless Communications

Prof. Dola Saha

Assistant Professor, Department of Electrical & Computer Engineering
co-Director, Mobile Emerging Systems and Applications (MESA) Lab

College of Engineering and Applied Sciences
University at Albany, SUNY

Air Force Research Laboratory, Summer 2021

Dola Saha (UAlbany) Deep Learning 2021 1 / 128

Introduction

Introduction

Dola Saha (UAlbany) Deep Learning 2021 2 / 128

Introduction

Motivation

Several Magazines, Journals, Conferences

IEEE ComSoc Technical Committee
Emerging Technologies Initiative Machine
Learning for Communications

Dola Saha (UAlbany) Deep Learning 2021 3 / 128

Introduction

Materials

Deep Learning
Ian Goodfellow, Yoshua Bengio and Aaron Courville
https://www.deeplearningbook.org/

Dive into Deep Learning
Aston Zhang, Zachary Lipton, Mu Li and Alexander Smola
https://d2l.ai

Machine Learning: A Probabilistic Perspective
Kevin P. Murphy
https://probml.github.io/pml-book/

Several published papers

Dola Saha (UAlbany) Deep Learning 2021 4 / 128

https://www.deeplearningbook.org/
https://d2l.ai
https://probml.github.io/pml-book/

Introduction

Wireless Networking Applications (Some use cases)

Channel Modeling

Channel Estimation

Beamforming and beam prediction

Antenna tilting

RF fingerprinting

Spectrum availability prediction

Modulation detection

Waveform generation

Channel Coding

Resource Allocation

Path planning for autonomous systems

Handover

Wireless user behavior

Wireless content prediction

UAV trajectory prediction

Dola Saha (UAlbany) Deep Learning 2021 5 / 128

Introduction

Why Deep Learning can yield better results in Wireless Communication?

Signal processing in Tx-Rx chains have been developed (and are optimal) for Gaussian
channels

Often, it is difficult to find a closed form representation of a problem

Computational complexity of optimal solutions might be high

New areas of research

Dola Saha (UAlbany) Deep Learning 2021 6 / 128

Introduction

Understanding Wireless Data

Signals are complex valued (I, Q), whereas image data is three dimensional (RGB)

Spectrogram can be considered images, but we lose information

Range varies from [0-254] in image, whereas between [-1,+1] in wireless signals

Challenge: Dataset

Dola Saha (UAlbany) Deep Learning 2021 7 / 128

Introduction

Evolution of Deep Learning

CHAPTER 1. INTRODUCTION

AI

Machine learning

Representation learning

Deep learning

Example:
Knowledge

bases

Example:
Logistic

regression

Example:
Shallow

autoencodersExample:
MLPs

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.

9

M. E. Morocho-Cayamcela, H. Lee and W. Lim, “Machine Learning for 5G/B5G
Mobile and Wireless Communications: Potential, Limitations, and Future
Directions,” in IEEE Access, vol. 7, pp. 137184-137206, 2019, doi:
10.1109/ACCESS.2019.2942390.

Dola Saha (UAlbany) Deep Learning 2021 8 / 128

Introduction

Key Reasons for Success of Deep Learning

Increasing Dataset Sizes
5000 labeled samples/category

Increasing Model Sizes
Hidden layers doubled every 2.4years
Availability of faster CPUs
Advent of GPUs
Faster network connectivity
Better software infrastructure

CHAPTER 1. INTRODUCTION

1950 1985 2000 2015 2056

Year

10�2
10�1

100
101
102
103
104
105
106
107
108
109

1010
1011

N
u
m

b
er

of
n
eu

ro
n
s

(l
og

ar
it
h
m

ic
sc

al
e)

1 2

3

4
5

6

7

8

9
10

11

12

13

14

15

16
17

18
19 20

Sponge

Roundworm

Leech

Ant
Bee

Frog

Octopus

Human

Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive linear element (Widrow and Hoff, 1960)

3. Neocognitron (Fukushima, 1980)

4. Early back-propagation network (Rumelhart et al., 1986b)

5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)

6. Multilayer perceptron for speech recognition (Bengio et al., 1991)

7. Mean field sigmoid belief network (Saul et al., 1996)

8. LeNet-5 (LeCun et al., 1998b)

9. Echo state network (Jaeger and Haas, 2004)

10. Deep belief network (Hinton et al., 2006)

11. GPU-accelerated convolutional network (Chellapilla et al., 2006)

12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

13. GPU-accelerated deep belief network (Raina et al., 2009)

14. Unsupervised convolutional network (Jarrett et al., 2009)

15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

16. OMP-1 network (Coates and Ng, 2011)

17. Distributed autoencoder (Le et al., 2012)

18. Multi-GPU convolutional network (Krizhevsky et al., 2012)

19. COTS HPC unsupervised convolutional network (Coates et al., 2013)

20. GoogLeNet (Szegedy et al., 2014a)

27

CHAPTER 1. INTRODUCTION

1900 1950 1985 2000 2015

Year

100

101

102

103

104

105

106

107

108

109

D
at

a
se

t
si

ze
(n

u
m

b
er

ex
am

p
le

s)

Iris

MNIST

Public SVHN

ImageNet

CIFAR-10

ImageNet10k

ILSVRC 2014

Sports-1M

Rotated T vs. CT vs. G vs. F

Criminals

Canadian Hansard
WMT

Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (Garson,
1900; Gosset, 1908; Anderson, 1935; Fisher, 1936). In the 1950s through 1980s, the pioneers
of biologically inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (Widrow
and Hoff, 1960; Rumelhart et al., 1986b). In the 1980s and 1990s, machine learning
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in figure 1.9) of scans
of handwritten numbers (LeCun et al., 1998b). In the first decade of the 2000s, more
sophisticated datasets of this same size, such as the CIFAR-10 dataset (Krizhevsky and
Hinton, 2009) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset (Netzer et al.,
2011), various versions of the ImageNet dataset (Deng et al., 2009, 2010a; Russakovsky
et al., 2014a), and the Sports-1M dataset (Karpathy et al., 2014). At the top of the
graph, we see that datasets of translated sentences, such as IBM’s dataset constructed
from the Canadian Hansard (Brown et al., 1990) and the WMT 2014 English to French
dataset (Schwenk, 2014) are typically far ahead of other dataset sizes.

21

CHAPTER 1. INTRODUCTION

1950 1985 2000 2015

Year

101

102

103

104

C
on

n
ec

ti
on

s
p
er

n
eu

ro
n

1

2

3

4

5

6
7

8

9

10

Fruit fly

Mouse

Cat

Human

Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from Wikipedia (2015).

1. Adaptive linear element (Widrow and Hoff, 1960)

2. Neocognitron (Fukushima, 1980)

3. GPU-accelerated convolutional network (Chellapilla et al., 2006)

4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

5. Unsupervised convolutional network (Jarrett et al., 2009)

6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012)

9. COTS HPC unsupervised convolutional network (Coates et al., 2013)

10. GoogLeNet (Szegedy et al., 2014a)

24

Dola Saha (UAlbany) Deep Learning 2021 9 / 128

Introduction

Improved Accuracy

CHAPTER 1. INTRODUCTION

2010 2011 2012 2013 2014 2015

Year

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IL
S
V

R
C

cl
as

si
fi
ca

ti
on

er
ro

r
ra

te

Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet
Large Scale Visual Recognition Challenge, they have consistently won the competition
every year, and yielded lower and lower error rates each time. Data from Russakovsky
et al. (2014b) and He et al. (2015).

28

Dola Saha (UAlbany) Deep Learning 2021 10 / 128

Introduction

Learning Model

Data Learning
Model

<latexit sha1_base64="AROfqyrq/ZqtVw1dt8A4T7g6bF4=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquinosevFYwX5Au5Rsmm1Dk+ySZMWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Dbz249UaRbJBzOJqS/wULKQEWwyKaw+nfbLFbfmzoCWiZeTCuRo9MtfvUFEEkGlIRxr3fXc2PgpVoYRTqelXqJpjMkYD2nXUokF1X46u3WKTqwyQGGkbEmDZurviRQLrScisJ0Cm5Fe9DLxP6+bmPDaT5mME0MlmS8KE45MhLLH0YApSgyfWIKJYvZWREZYYWJsPCUbgrf48jJpndW8y9r5/UWlfpPHUYQjOIYqeHAFdbiDBjSBwAie4RXeHOG8OO/Ox7y14OQzh/AHzucPbvuN2Q==</latexit>

f(x)

<latexit sha1_base64="xYZka1EHgeBx11XDNEAJIBtNWIk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdGhiZnd3MzBrJhi/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoduo3H1FpHsl7M47RD+lA8j5n1Fip9tQtltyyOwNZJl5GSpCh2i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dHTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+ymXcWJQsvmifiKIicj0a9LjCpkRY0soU9zeStiQKsqMzaZgQ/AWX14mjbOyd1k+r12UKjdZHHk4gmM4BQ+uoAJ3UIU6MEB4hld4cx6cF+fd+Zi35pxs5hD+wPn8AejVjQQ=</latexit>x
<latexit sha1_base64="fSFHYI9Zr8JNHToPEkr14C8WnIo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVx71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvqnJRvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MH6lmNBQ==</latexit>y

Output
⁃ Classification
⁃ Domain Transfer
⁃ Prediction

Figure: Approximate f (x) from the data Figure: A typical training process

Learning is the process by which we discover the right setting of the knobs yielding the
desired behavior from our model. In other words, we train our model with data.

Wireless Applications: modulation detection, RF fingerprinting, channel estimation, channel
modeling, generate waveforms

Dola Saha (UAlbany) Deep Learning 2021 11 / 128

Introduction

Key Components of Learning

The data that we can learn from: constitutes attributes or features from which the model
should learn.

Training Set: set of examples used to fit the parameters of the model
Validation/Testing Set: set of examples used to test the performance of the model after training

A model of how to transform the data
An objective function that quantifies how well (or badly) the model is doing.

a mathematical formulation to measure performance in each iteration (epoch) of training
conventionally, minimization, leading to the term, loss function

An algorithm to adjust the model’s parameters to optimize the objective function.

Dola Saha (UAlbany) Deep Learning 2021 12 / 128

Introduction

Key Components of Learning

The data that we can learn from: constitutes attributes or features from which the model
should learn.

Training Set: set of examples used to fit the parameters of the model
Validation/Testing Set: set of examples used to test the performance of the model after training

A model of how to transform the data

An objective function that quantifies how well (or badly) the model is doing.
a mathematical formulation to measure performance in each iteration (epoch) of training
conventionally, minimization, leading to the term, loss function

An algorithm to adjust the model’s parameters to optimize the objective function.

Dola Saha (UAlbany) Deep Learning 2021 12 / 128

Introduction

Key Components of Learning

The data that we can learn from: constitutes attributes or features from which the model
should learn.

Training Set: set of examples used to fit the parameters of the model
Validation/Testing Set: set of examples used to test the performance of the model after training

A model of how to transform the data
An objective function that quantifies how well (or badly) the model is doing.

a mathematical formulation to measure performance in each iteration (epoch) of training
conventionally, minimization, leading to the term, loss function

An algorithm to adjust the model’s parameters to optimize the objective function.

Dola Saha (UAlbany) Deep Learning 2021 12 / 128

Introduction

Key Components of Learning

The data that we can learn from: constitutes attributes or features from which the model
should learn.

Training Set: set of examples used to fit the parameters of the model
Validation/Testing Set: set of examples used to test the performance of the model after training

A model of how to transform the data
An objective function that quantifies how well (or badly) the model is doing.

a mathematical formulation to measure performance in each iteration (epoch) of training
conventionally, minimization, leading to the term, loss function

An algorithm to adjust the model’s parameters to optimize the objective function.

Dola Saha (UAlbany) Deep Learning 2021 12 / 128

Introduction

Types of Machine Learning Problems

Supervised Learning: addresses the task of predicting labels given input features (labels)
Example Modulation Detection: Labels provided during training (modulation order)
Types: Regression, Classification, Tagging, Search, Recommender Systems, Sequence Learning

Unsupervised Learning: no features or corresponding labels are provided
Example Modulation Detection: Can we find number of clusters in the constellation? - clustering
Generate new waveforms: Generative adversarial networks

Interacting with an Environment: offine learning, agents adapt to distribution shift in data
Reinforcement Learning: develop an agent that interacts with an environment, takes actions, a
policy to reward the action

Figure: Interacting with an Environment Figure: Reinforcement Learning

Dola Saha (UAlbany) Deep Learning 2021 13 / 128

Introduction

Types of Machine Learning Problems

Supervised Learning: addresses the task of predicting labels given input features (labels)
Example Modulation Detection: Labels provided during training (modulation order)
Types: Regression, Classification, Tagging, Search, Recommender Systems, Sequence Learning

Unsupervised Learning: no features or corresponding labels are provided
Example Modulation Detection: Can we find number of clusters in the constellation? - clustering
Generate new waveforms: Generative adversarial networks

Interacting with an Environment: offine learning, agents adapt to distribution shift in data
Reinforcement Learning: develop an agent that interacts with an environment, takes actions, a
policy to reward the action

Figure: Interacting with an Environment Figure: Reinforcement Learning

Dola Saha (UAlbany) Deep Learning 2021 13 / 128

Introduction

Types of Machine Learning Problems

Supervised Learning: addresses the task of predicting labels given input features (labels)
Example Modulation Detection: Labels provided during training (modulation order)
Types: Regression, Classification, Tagging, Search, Recommender Systems, Sequence Learning

Unsupervised Learning: no features or corresponding labels are provided
Example Modulation Detection: Can we find number of clusters in the constellation? - clustering
Generate new waveforms: Generative adversarial networks

Interacting with an Environment: offine learning, agents adapt to distribution shift in data

Reinforcement Learning: develop an agent that interacts with an environment, takes actions, a
policy to reward the action

Figure: Interacting with an Environment

Figure: Reinforcement Learning

Dola Saha (UAlbany) Deep Learning 2021 13 / 128

Introduction

Types of Machine Learning Problems

Supervised Learning: addresses the task of predicting labels given input features (labels)
Example Modulation Detection: Labels provided during training (modulation order)
Types: Regression, Classification, Tagging, Search, Recommender Systems, Sequence Learning

Unsupervised Learning: no features or corresponding labels are provided
Example Modulation Detection: Can we find number of clusters in the constellation? - clustering
Generate new waveforms: Generative adversarial networks

Interacting with an Environment: offine learning, agents adapt to distribution shift in data
Reinforcement Learning: develop an agent that interacts with an environment, takes actions, a
policy to reward the action

Figure: Interacting with an Environment Figure: Reinforcement Learning

Dola Saha (UAlbany) Deep Learning 2021 13 / 128

Machine Learning Basics

Machine Learning Basics

Dola Saha (UAlbany) Deep Learning 2021 14 / 128

Machine Learning Basics

Machine Learning Basics

Linear Algebra

Probability

Calculus

Dola Saha (UAlbany) Deep Learning 2021 15 / 128

Machine Learning Basics Linear Algebra

Scalars and Vectors

A scalar is a single number
Integers, real numbers, rational numbers, etc.
We denote it with italic font: a, n, x

A vector is a 1-D array of numbers
Can be real, binary, integer, etc.
Example notation for type and size: x ∈ Rn

A matrix is a 2-D array of numbers
Can be real, binary, integer, etc.
Example notation for type and size: A ∈ Rm×n

A tensor is an array of numbers, that may have
zero dimensions, and be a scalar
one dimension, and be a vector
two dimensions, and be a matrix
or more dimensions.

Vector:

x =

x1
x2
...

xn

Matrix:

A =

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

Dola Saha (UAlbany) Deep Learning 2021 16 / 128

Machine Learning Basics Linear Algebra

Matrix Operations

Matrix Transpose: B = A>

A =

a11 a12 · · · a1n
a21 a22 · · · a2n

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

 A>
=

a11 a21 . . . am1
a12 a22 . . . am2

.

.

.
.
.
.

. . .
.
.
.

a1n a2n . . . amn

Hadamard Product: Elementwise multiplication C = A� B

A� B =

a11b11 a12b12 . . . a1nb1n
a21b21 a22b22 . . . a2nb2n

.

.

.
.
.
.

. . .
.
.
.

am1bm1 am2bm2 . . . amnbmn

Reduction: Sum of the elements

S =
m∑

i=1

n∑
j=1

aij

Dola Saha (UAlbany) Deep Learning 2021 17 / 128

Machine Learning Basics Linear Algebra

Matrix Operations

Matrix Transpose: B = A>

A =

a11 a12 · · · a1n
a21 a22 · · · a2n

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

 A>
=

a11 a21 . . . am1
a12 a22 . . . am2

.

.

.
.
.
.

. . .
.
.
.

a1n a2n . . . amn

Hadamard Product: Elementwise multiplication C = A� B

A� B =

a11b11 a12b12 . . . a1nb1n
a21b21 a22b22 . . . a2nb2n

.

.

.
.
.
.

. . .
.
.
.

am1bm1 am2bm2 . . . amnbmn

Reduction: Sum of the elements

S =
m∑

i=1

n∑
j=1

aij

Dola Saha (UAlbany) Deep Learning 2021 17 / 128

Machine Learning Basics Linear Algebra

Matrix Operations

Matrix Transpose: B = A>

A =

a11 a12 · · · a1n
a21 a22 · · · a2n

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

 A>
=

a11 a21 . . . am1
a12 a22 . . . am2

.

.

.
.
.
.

. . .
.
.
.

a1n a2n . . . amn

Hadamard Product: Elementwise multiplication C = A� B

A� B =

a11b11 a12b12 . . . a1nb1n
a21b21 a22b22 . . . a2nb2n

.

.

.
.
.
.

. . .
.
.
.

am1bm1 am2bm2 . . . amnbmn

Reduction: Sum of the elements

S =
m∑

i=1

n∑
j=1

aij

Dola Saha (UAlbany) Deep Learning 2021 17 / 128

Machine Learning Basics Linear Algebra

Matrix Operations

Matrix Multiplication: C = AB

A =

a11 a12 · · · a1k
a21 a22 · · · a2k

.

.

.
.
.
.

. . .
.
.
.

an1 an2 · · · ank

 , B =

b11 b12 · · · b1m
b21 b22 · · · b2m

.

.

.
.
.
.

. . .
.
.
.

bk1 bk2 · · · bkm

 , C = AB =

a>1
a>2

.

.

.
a>n

[
b1 b2 · · · bm

]
=

a>1 b1 a>1 b2 · · · a>1 bm
a>2 b1 a>2 b2 · · · a>2 bm

.

.

.
.
.
.

. . .
.
.
.

a>n b1 a>n b2 · · · a>n bm

Matrix Inversion: A−1A = In, where I is the identity matrix
Example: Let Ax = b be a system of linear equation.
Then, A−1Ax = A−1b, which implies x = A−1b

Dola Saha (UAlbany) Deep Learning 2021 18 / 128

Machine Learning Basics Linear Algebra

Matrix Operations

Matrix Multiplication: C = AB

A =

a11 a12 · · · a1k
a21 a22 · · · a2k

.

.

.
.
.
.

. . .
.
.
.

an1 an2 · · · ank

 , B =

b11 b12 · · · b1m
b21 b22 · · · b2m

.

.

.
.
.
.

. . .
.
.
.

bk1 bk2 · · · bkm

 , C = AB =

a>1
a>2

.

.

.
a>n

[
b1 b2 · · · bm

]
=

a>1 b1 a>1 b2 · · · a>1 bm
a>2 b1 a>2 b2 · · · a>2 bm

.

.

.
.
.
.

. . .
.
.
.

a>n b1 a>n b2 · · · a>n bm

Matrix Inversion: A−1A = In, where I is the identity matrix
Example: Let Ax = b be a system of linear equation.
Then, A−1Ax = A−1b, which implies x = A−1b

Dola Saha (UAlbany) Deep Learning 2021 18 / 128

Machine Learning Basics Linear Algebra

Matrix Operations

Norm: Function to measure size of a vector

Does not represent dimensionality but rather the magnitude of the components.

A vector norm is a function f that maps a vector to a scalar, satisfying following properties:
1 if all elements of a vector are scaled by a constant factor α, its norm also scales by α

f (αx) = |α|f (x)
2 Triangle inequality

f (x + y) ≤ f (x) + f (y)
3 Norm must be non-negative

f (x) ≥ 0
4 smallest norm is achieved by a vector consisting of all zeros
∀i, [x]i = 0⇔ f (x) = 0

Dola Saha (UAlbany) Deep Learning 2021 19 / 128

Machine Learning Basics Linear Algebra

Matrix Operations

Norm: Function to measure size of a vector

Does not represent dimensionality but rather the magnitude of the components.
A vector norm is a function f that maps a vector to a scalar, satisfying following properties:

1 if all elements of a vector are scaled by a constant factor α, its norm also scales by α
f (αx) = |α|f (x)

2 Triangle inequality
f (x + y) ≤ f (x) + f (y)

3 Norm must be non-negative
f (x) ≥ 0

4 smallest norm is achieved by a vector consisting of all zeros
∀i, [x]i = 0⇔ f (x) = 0

Dola Saha (UAlbany) Deep Learning 2021 19 / 128

Machine Learning Basics Linear Algebra

Matrix Operations

Norms
Generalized Form: (Lp norm) ‖x‖p = (

∑n
i=1 |xi|p)1/p, where p ∈ R, p ≥ 1

L2 norm is the Eucledian distance
Suppose elements in the n-dimensional vector x are x1, . . . , xn

Then, L2 norm of x is ‖x‖2 =
√∑n

i=1 x2
i ,

L1 norm is ‖x‖1 =
∑n

i=1 |xi|
Compared to L2 norm, it is less influenced by outliers
Max norm (L∞): absolute value of the element with the largest magnitude in the vector
‖x‖∞ = maxi |xi|
Frobenius norm of matrices is similar to L2 Norm of vectors
‖X‖F =

√∑m
i=1
∑n

j=1 x2
ij, where X ∈ Rm×n

Objective functions are described as norms: minimize distance between predictions and
ground-truth observations

Dola Saha (UAlbany) Deep Learning 2021 20 / 128

Machine Learning Basics Probability

Probability: Connection to Machine Learning

Machine Learning is probabilistic (not deterministic)

(a) 95% QPSK (b) Law of large numbers

Basic Probability Theory: law of large numbers
Sources of uncertainty

Inherent stochasticity in the system being modeled
Incomplete observability
Incomplete modeling

Dola Saha (UAlbany) Deep Learning 2021 21 / 128

Machine Learning Basics Probability

Basic Probability

Sample space or outcome space: S = {1, 2, 3, 4, 5, 6}, where output of random experiment is
an event A.
Probability of an event A in the given sample space S, denoted as P(A) satisfies the
following properties:

For any event A, its probability is never negative, i.e., P(A) ≥ 0
Probability of the entire sample space is 1, or P(S) = 1
For any countable sequence of events, A1,A2, . . . that are mutually exclusive, (Ai ∩ Aj = ∅ for
all i 6= j) the probability that any happens is equal to the sum of their individual probabilities, or
P(
⋃∞

i=1Ai) =
∑∞

i=1 P(Ai)

Random Variables: A random variable is a variable that can take on different values randomly.
Random variables may be discrete (integer or states) or continuous (real numbers).

Dola Saha (UAlbany) Deep Learning 2021 22 / 128

Machine Learning Basics Probability

Probability Distributions

A probability distribution is a description of how likely a random variable or set of random
variables is to take on each of its possible states.

The probability that x = x is denoted as P(x)

Probability mass function (PMF): A probability distribution over discrete variables

Probability density function (PDF): A probability distribution over continuous variables

Dola Saha (UAlbany) Deep Learning 2021 23 / 128

Machine Learning Basics Probability

Multiple Random Variables

Joint Probability: P(A = a,B = b), where P(A = a,B = b) ≤ P(A = a)

Conditional Probability: P(B = b | A = a) is the ratio 0 ≤ P(A=a,B=b)
P(A=a) ≤ 1

– probability of B = b, provided that A = a has occurred
– used in causal modeling

Bayes’ Theorem

P(A | B) = P(B | A)P(A)
P(B)

– The probability of two events A and B happening is P(A ∩ B) = P(A)P(B | A)
– Similarly, P(B ∩ A) = P(B)P(A | B)
– Equating them, P(B)P(A | B) = P(A)P(B | A)
– Hence, P(A | B) = P(B|A)P(A)

P(B)

Dola Saha (UAlbany) Deep Learning 2021 24 / 128

Machine Learning Basics Probability

Expectation, Variance and Covariance

To summarize key characteristics of probability distributions, we need some measures.
The expectation, or expected value, of some function f (x) with respect to a probability
distribution P(x) is the average, or mean value, that f takes on when x is drawn from P

Ex∼P[f (x)] =
∑

x

f (x)P(x)

The variance gives a measure of how much the values of a function of a random variable x
vary as we sample different values of x from its probability distribution

Var[X] = E
[
(X − E[X])2] = E[X2]− E[X]2

Covariance describes how much two values are linearly related to each other

Cov(f (x), g(y)) = E[(f (x)− E[f (x)])(g(y)− E[g(y)])]

Dola Saha (UAlbany) Deep Learning 2021 25 / 128

Machine Learning Basics Calculus

Differential Calculus

Optimization in neural networks uses Differential Calculus
If a function f : R→ R has scalar input and output
Derivative of f is

f ′(x) = lim
h→0

f (x + h)− f (x)
h

if f ′(a) exists, f is said to be differentiable at a
The derivative f ′(x) is instantaneous rate of change of f (x) with respect to x.
Common notations: f ′(x) = y′ = dy

dx = df
dx = d

dx f (x) = Df (x) = Dxf (x)
Example: f (x) = x2 − 3x, f ′(x) = 2x− 3 is the tangent

Dola Saha (UAlbany) Deep Learning 2021 26 / 128

Machine Learning Basics Calculus

Rules of Differentiation

Constant Multiple Rule
d
dx

[Cf (x)] = C
d
dx

f (x)

Sum Rule
d
dx

[f (x) + g(x)] =
d
dx

f (x) +
d
dx

g(x)

Product Rule
d
dx

[f (x)g(x)] = f (x)
d
dx

[g(x)] + g(x)
d
dx

[f (x)]

Quotient Rule
d
dx

[
f (x)
g(x)

]
=

g(x) d
dx [f (x)]− f (x) d

dx [g(x)]
[g(x)]2

Dola Saha (UAlbany) Deep Learning 2021 27 / 128

Machine Learning Basics Calculus

Partial Derivatives and Gradients

In deep learning, functions depend on many variables

In a multivariate function, y = f (x1, x2, . . . , xn)

∂y
∂xi

= lim
h→0

f (x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f (x1, . . . , xi, . . . , xn)

h

Notations: ∂y
∂xi

= ∂f
∂xi

= fxi = fi = Dif = Dxi f

The gradient vector of a multivariate function is concatenated partial derivatives of the
function with respect to all its variables, the gradient is

If x = [x1, x2, . . . , xn]
> is a vector,

∇xf (x) = ∇f (x) =
[
∂f (x)
∂x1

,
∂f (x)
∂x2

, . . . ,
∂f (x)
∂xn

]>

Dola Saha (UAlbany) Deep Learning 2021 28 / 128

Machine Learning Basics Calculus

Chain Rule

Multivariate functions in deep learning are composite

Chain rule enables us to differentiate composite functions

If y = f (u) and u = g(x), then
dy
dx

=
dy
du

du
dx

For arbitrary number of variables, (y has variables u1, u2, . . . , um and x has variable
x1, x2, . . . , nm)

dy
dxi

=
dy
du1

du1

dxi
+

dy
du2

du2

dxi
+ · · ·+ dy

dum

dum

dxi

Dola Saha (UAlbany) Deep Learning 2021 29 / 128

Linear Neural Networks

Linear Neural Networks

Dola Saha (UAlbany) Deep Learning 2021 30 / 128

Linear Neural Networks Linear Regression

Linear Regression (Statistics)

Regression: A set of methods for modeling the relationship between one or more independent
variables and a dependent variable
Assumptions:

– Relationship between the independent variables x and the dependent variable y is linear
– Noise is Gaussian

Example: House price depends on features (age and area)

price = warea · area + wage · age + b, where warea & wage are weights and b is bias

For d features, the prediction, ŷ = w1x1 + ...+ wdxd + b
In linear algebra notations,

ŷ = w>x + b,where features of single data examples x ∈ Rd and weights w ∈ Rd

For a collection of features X, the predictions ŷ ∈ Rn can be expressed via the matrix-vector
product

ŷ = Xw + b
Dola Saha (UAlbany) Deep Learning 2021 31 / 128

Linear Neural Networks Linear Regression

Loss Function

Measure of fitness: quantifies the distance between the real and predicted value of the target
Usually a non-negative number, smaller is better, 0 for perfect prediction
Most popular loss function in regression problems is the squared error

l(i)(w, b) =
1
2

(
ŷ(i) − y(i)

)2

Mean Squared Error (MSE): Average of losses on entire dataset quantifies quality of a model

L(w, b) =
1
n

n∑

i=1

l(i)(w, b) =
1
n

n∑

i=1

1
2

(
w>x(i) + b− y(i)

)2

Objectives during training: w∗, b∗ = argminw,b L(w, b)
Dola Saha (UAlbany) Deep Learning 2021 32 / 128

Linear Neural Networks Linear Regression

Analytic Solution

Linear regression is a simple optimization problem

Steps to solve:
– Subsume the bias b into the parameter w by appending a column to the design matrix

consisting of all ones
– Prediction problem is to minimize ‖y− Xw‖2

– Taking the derivative of the loss w.r.t. w and setting it to 0, yields closed form solution

w∗ = (X>X)−1X>y

Linear regression is extremely simple and limited learning algorithm

Dola Saha (UAlbany) Deep Learning 2021 33 / 128

Linear Neural Networks Linear Regression

Gradient Descent as Optimization Algorithm

Optimization refers to the task of either minimizing or maximizing some function f (x) by
altering x

In deep learning, most popular optimization is done by Gradient Descent [Cauchy, 1847]
– Reduce the error by updating the parameters in the direction that iteratively lowers the

loss function
– Requires taking the derivative of the loss function, which is an average of the losses

computed on entire dataset
– Extremely slow in practice

Minibatch Stochastic Gradient Descent: sample a random minibatch of examples every time
there is a need to compute the update

Dola Saha (UAlbany) Deep Learning 2021 34 / 128

Linear Neural Networks Linear Regression

Minibatch Stochastic Gradient Descent

Randomly sample a minibatch B consisting of a fixed number of training examples
Compute derivative (gradient) of average loss on minibatch with regard to model parameters
Multiply the gradient by a predetermined positive value η
Subtract the resulting term from the current parameter values

(w, b)← (w, b)− η

|B|
∑
i∈B

∂(w,b)l(i)(w, b),where |B| is number of examples in each minibatch & η is learning rate

Steps of the algorithm:
(i) initialize the values of the model parameters, typically randomly
(ii) iteratively sample random minibatches from the data, updating the parameters in the

direction of the negative gradient

w← w− η

|B|
∑
i∈B

∂wl(i)(w, b) = w− η

|B|
∑
i∈B

x(i)
(

w>x(i) + b− y(i)
)
,

b← b− η

|B|
∑
i∈B

∂bl(i)(w, b) = b− η

|B|
∑
i∈B

(
w>x(i) + b− y(i)

)
.

The values of |B| and η are manually pre-specified and not learned through model training

Dola Saha (UAlbany) Deep Learning 2021 35 / 128

Linear Neural Networks Linear Regression

Minibatch Stochastic Gradient Descent

Randomly sample a minibatch B consisting of a fixed number of training examples
Compute derivative (gradient) of average loss on minibatch with regard to model parameters
Multiply the gradient by a predetermined positive value η
Subtract the resulting term from the current parameter values

(w, b)← (w, b)− η

|B|
∑
i∈B

∂(w,b)l(i)(w, b),where |B| is number of examples in each minibatch & η is learning rate

Steps of the algorithm:
(i) initialize the values of the model parameters, typically randomly
(ii) iteratively sample random minibatches from the data, updating the parameters in the

direction of the negative gradient

w← w− η

|B|
∑
i∈B

∂wl(i)(w, b) = w− η

|B|
∑
i∈B

x(i)
(

w>x(i) + b− y(i)
)
,

b← b− η

|B|
∑
i∈B

∂bl(i)(w, b) = b− η

|B|
∑
i∈B

(
w>x(i) + b− y(i)

)
.

The values of |B| and η are manually pre-specified and not learned through model training

Dola Saha (UAlbany) Deep Learning 2021 35 / 128

Linear Neural Networks Linear Regression

Minibatch Stochastic Gradient Descent

Randomly sample a minibatch B consisting of a fixed number of training examples
Compute derivative (gradient) of average loss on minibatch with regard to model parameters
Multiply the gradient by a predetermined positive value η
Subtract the resulting term from the current parameter values

(w, b)← (w, b)− η

|B|
∑
i∈B

∂(w,b)l(i)(w, b),where |B| is number of examples in each minibatch & η is learning rate

Steps of the algorithm:
(i) initialize the values of the model parameters, typically randomly
(ii) iteratively sample random minibatches from the data, updating the parameters in the

direction of the negative gradient

w← w− η

|B|
∑
i∈B

∂wl(i)(w, b) = w− η

|B|
∑
i∈B

x(i)
(

w>x(i) + b− y(i)
)
,

b← b− η

|B|
∑
i∈B

∂bl(i)(w, b) = b− η

|B|
∑
i∈B

(
w>x(i) + b− y(i)

)
.

The values of |B| and η are manually pre-specified and not learned through model training
Dola Saha (UAlbany) Deep Learning 2021 35 / 128

Linear Neural Networks Linear Regression

Linear Regression Example

0.0 0.5 1.0 1.5 2.0
Y

10

20

30

40

50

60

Data generated from y=10x+25

Prediction: w=23, b=11

Error (ŷ−y)

#Generate Data (blue dots)
X = 2 * np.random.rand(100,1)
Y = 25 + 10 * X+np.random.randn(100,1)

#Random Prediction (red dots)
weight = 23.0
bias = 11.0
Y_hat = bias + weight * X

#Error (red lines)
error = Y_hat - Y
sq_err = 0.5 * pow((Y - Y_hat),2)
mse = np.mean(sq_err)

Dola Saha (UAlbany) Deep Learning 2021 36 / 128

Linear Neural Networks Linear Regression

The Gradient

0 5 10 15 20 25
Bias

20

30

40

50

60

70

80

90

100

M
SE

Mean Squared Error with w=23

10 15 20 25 30 35
Weight

20

30

40

50

60

70

80

90

100

M
SE

Mean Squared Error with b=11

Dola Saha (UAlbany) Deep Learning 2021 37 / 128

Linear Neural Networks Linear Regression

Gradient Descent

Dola Saha (UAlbany) Deep Learning 2021 38 / 128

Linear Neural Networks Linear Regression

Calculate Gradient and Update

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

M
SE

Learning Rate η=0.1

0.0 0.5 1.0 1.5 2.020

25

30

35

40

45

50

Data
Prediction

for i in range(1000):
#Calculate the gradient
err = Y-Y_hat
grad_bias = -(err)
grad_weight = -(err)*X

#Mean of the gradients
g_w = np.mean(grad_weight)
g_b = np.mean(grad_bias)

#Update the weight and bias
weight = weight - rate * g_w
bias = bias - rate * g_b

Dola Saha (UAlbany) Deep Learning 2021 39 / 128

Linear Neural Networks Linear Regression

The Learning Rate

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

M
SE

Learning Rate η=0.1

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

M
SE

Learning Rate η=0.01

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

M
SE

Learning Rate η=0.001

Learning Rate and Batch Size are tunable but not updated in the training loop

They are called Hyperparameters

Hyperparameter tuning is the process by which hyperparameters are chosen

Hyperparameters are adjusted based on the results of the training loop

Dola Saha (UAlbany) Deep Learning 2021 40 / 128

Linear Neural Networks Linear Regression

Choice of Hyperparameters

Learning Rate:
– Too small will be too slow, too large might oscillate

Batch Size:
– Too small: Workload is too small, hard to fully utilize computation resources
– Too large: Memory issues, Wasteful computation when xi are identical

Dola Saha (UAlbany) Deep Learning 2021 41 / 128

Linear Neural Networks Linear Regression

Motivation behind Squared Loss

Probability Density Function (PDF) of a normal distribution with mean µ and variance σ2

p(x) =
1√

2πσ2
exp

(
− 1

2σ2 (x− µ)
2
)

8 6 4 2 0 2 4 6 8
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
(x

)

Mean = 0, SD = 1
Mean = 0, SD = 2
Mean = 3, SD = 1

Changing the mean corresponds to a shift along the X-axis
Increasing the variance spreads distribution out, lowering its peak

Dola Saha (UAlbany) Deep Learning 2021 42 / 128

Linear Neural Networks Linear Regression

Motivation behind Squared Loss

Noise in observations has a normal distribution y = w>x + b + ε where ε ∼ N (0, σ2)

Likelihood of seeing a particular y for a given x
P(y | x) = 1√

2πσ2 exp
(
− 1

2σ2 (y− w>x− b)2
)

According to the principle of maximum likelihood, the best values of parameters w and b are
those that maximize the likelihood of the entire dataset P(y | X) =

∏n
i=1 p(y(i)|x(i))

Maximum Likelihood Estimators: Estimators chosen according to the principle of maximum
likelihood

Maximizing product of many exponential functions could be a hard problem

Instead we can choose maximizing the log of the likelihood that does not change the objective

Convert to minimization by taking negative log-likelihood

− logP(y | X) =
∑n

i=1
1
2 log(2πσ

2) + 1
2σ2

(
y(i) − w>x(i) − b

)2

Assume σ is a constant, it is identical to squared loss

Dola Saha (UAlbany) Deep Learning 2021 43 / 128

Linear Neural Networks Linear Regression

Motivation behind Squared Loss

Noise in observations has a normal distribution y = w>x + b + ε where ε ∼ N (0, σ2)

Likelihood of seeing a particular y for a given x
P(y | x) = 1√

2πσ2 exp
(
− 1

2σ2 (y− w>x− b)2
)

According to the principle of maximum likelihood, the best values of parameters w and b are
those that maximize the likelihood of the entire dataset P(y | X) =

∏n
i=1 p(y(i)|x(i))

Maximum Likelihood Estimators: Estimators chosen according to the principle of maximum
likelihood

Maximizing product of many exponential functions could be a hard problem

Instead we can choose maximizing the log of the likelihood that does not change the objective

Convert to minimization by taking negative log-likelihood

− logP(y | X) =
∑n

i=1
1
2 log(2πσ

2) + 1
2σ2

(
y(i) − w>x(i) − b

)2

Assume σ is a constant, it is identical to squared loss

Dola Saha (UAlbany) Deep Learning 2021 43 / 128

Linear Neural Networks Linear Regression

Motivation behind Squared Loss

Noise in observations has a normal distribution y = w>x + b + ε where ε ∼ N (0, σ2)

Likelihood of seeing a particular y for a given x
P(y | x) = 1√

2πσ2 exp
(
− 1

2σ2 (y− w>x− b)2
)

According to the principle of maximum likelihood, the best values of parameters w and b are
those that maximize the likelihood of the entire dataset P(y | X) =

∏n
i=1 p(y(i)|x(i))

Maximum Likelihood Estimators: Estimators chosen according to the principle of maximum
likelihood

Maximizing product of many exponential functions could be a hard problem

Instead we can choose maximizing the log of the likelihood that does not change the objective

Convert to minimization by taking negative log-likelihood

− logP(y | X) =
∑n

i=1
1
2 log(2πσ

2) + 1
2σ2

(
y(i) − w>x(i) − b

)2

Assume σ is a constant, it is identical to squared loss

Dola Saha (UAlbany) Deep Learning 2021 43 / 128

Linear Neural Networks Linear Regression

Motivation behind Squared Loss

Noise in observations has a normal distribution y = w>x + b + ε where ε ∼ N (0, σ2)

Likelihood of seeing a particular y for a given x
P(y | x) = 1√

2πσ2 exp
(
− 1

2σ2 (y− w>x− b)2
)

According to the principle of maximum likelihood, the best values of parameters w and b are
those that maximize the likelihood of the entire dataset P(y | X) =

∏n
i=1 p(y(i)|x(i))

Maximum Likelihood Estimators: Estimators chosen according to the principle of maximum
likelihood

Maximizing product of many exponential functions could be a hard problem

Instead we can choose maximizing the log of the likelihood that does not change the objective

Convert to minimization by taking negative log-likelihood

− logP(y | X) =
∑n

i=1
1
2 log(2πσ

2) + 1
2σ2

(
y(i) − w>x(i) − b

)2

Assume σ is a constant, it is identical to squared loss
Dola Saha (UAlbany) Deep Learning 2021 43 / 128

Linear Neural Networks Linear Regression

Single Layer Neural Network (NN): Linear Regression

Input Layer: Number of inputs = M =
Feature Dimensionality, given

Output Layer: Number of outputs = 1

One single computed neuron

Number of layers of the NN = 1 [input layer
is not counted]

Linear Regression can be cast in this NN

Fully-connected layer or Dense layer: when
all inputs are connected to all outputs

x1

xi

xM

o1

w1

wi

wM

…

…

Input Layer

Output
Layer

<latexit sha1_base64="yYKuYkv5E5gm+VMGn81uHSEoHBA=">AAACH3icbVDLSsNAFJ34rPUVdelmsAiuSqJS3RSKbtwIFewDmhgmk0k7dPJgZmJbQv7Ejb/ixoUi4q5/46StoK0HZjiccy/33uPGjAppGGNtaXlldW29sFHc3Nre2dX39psiSjgmDRyxiLddJAijIWlIKhlpx5ygwGWk5favc7/1SLigUXgvRzGxA9QNqU8xkkpy9IolksBJadXIHtLbDA4Uz+Aw/6tWgGTP9dNBBi3sRRL+CMPM0UtG2ZgALhJzRkpghrqjf1lehJOAhBIzJETHNGJpp4hLihnJilYiSIxwH3VJR9EQBUTY6eS+DB4rxYN+xNULJZyovztSFAgxClxVmW8o5r1c/M/rJNK/tFMaxokkIZ4O8hMGZQTzsKBHOcGSjRRBmFO1K8Q9xBGWKtKiCsGcP3mRNE/LZqV8dndeql3N4iiAQ3AEToAJLkAN3IA6aAAMnsALeAPv2rP2qn1on9PSJW3WcwD+QBt/A6Uco/0=</latexit>

MX

i=0

wixi = w · x

Dola Saha (UAlbany) Deep Learning 2021 44 / 128

Linear Neural Networks Linear Regression

Connection to Neurons

Information xi arriving from other neurons (or environmental
sensors such as the retina) is received in the dendrites.

That information is weighted by synaptic weights wi

determining the effect of the inputs (e.g., activation or inhibition
via the product xiwi).

The weighted inputs arriving from multiple sources are
aggregated in the nucleus as a weighted sum y =

∑
i xiwi + b.

This information is then sent for further processing in the axon
y, after some nonlinear processing via σ(y).

From there it either reaches its destination (e.g., a muscle) or is
fed into another neuron via its dendrites.

Figure: Dendrites (input
terminals), the nucleus (CPU),
the axon (output wire), and the
axon terminals (output
terminals), enables connections
to other neurons via synapses

Dola Saha (UAlbany) Deep Learning 2021 45 / 128

Linear Neural Networks Softmax Regression

Regression vs Classification

Regression: estimates a continuous value

How much?

Example Application: Channel estimation

Single continuous output

Natural scale in R
Loss in terms of difference: y− f (x)

Classification: predicts a discrete category

Which one?

Example Application: Modulation
recognition, RF fingerprinting

Multiple classes, typically multiple outputs

Score should reflect confidence

Dola Saha (UAlbany) Deep Learning 2021 46 / 128

Linear Neural Networks Softmax Regression

Multi-class Classification

One-hot Encoding: A one-hot encoding is a vector with as many components as the number
of categories

The component corresponding to particular instance’s category is set to 1 and all other
components are set to 0

Example: QPSK has 4 constellation points
Constellation Hot-one Encoded Labels

1+j (1, 0, 0, 0)
-1+j (0, 1, 0, 0)
-1-j (0, 0, 1, 0)
1-j (0, 0, 0, 1)

Dola Saha (UAlbany) Deep Learning 2021 47 / 128

Linear Neural Networks Softmax Regression

Network Architecture

Estimate the conditional probabilities associated with all the possible classes
A model with multiple outputs, one per class
With linear models, we need as many affine functions as we have outputs
Each output will correspond to its own affine function
Example: 4 features and 3 output categories
12 scalars to represent the weights, 3 scalars to represent the biases

o1 = x1w11 + x2w12 + x3w13 + x4w14 + b1,

o2 = x1w21 + x2w22 + x3w23 + x4w24 + b2,

o3 = x1w31 + x2w32 + x3w33 + x4w34 + b3.

o = Wx + b Figure: Softmax regression is a fully
connected single-layer neural network

Dola Saha (UAlbany) Deep Learning 2021 48 / 128

Linear Neural Networks Softmax Regression

Softmax Operation

Interpret the outputs of the model as probabilities

Optimize parameters to produce probabilities that maximizes the likelihood of the observed
data

Need output ŷj, to be interpreted as the probability that a given item belongs to class j

Choose the class with the largest output value as the prediction argmaxj yj

For example, ŷ1 = 0.1, ŷ2 = 0.8 and ŷ3 = 0.1 indicates output is Category 2.

Dola Saha (UAlbany) Deep Learning 2021 49 / 128

Linear Neural Networks Softmax Regression

Softmax Operation

Goals:
– Logits should not be negative
– Sum of all logits equals 1
– Model should be differentiable

Softmax function:

ŷ = softmax(o) where ŷj =
exp(oj)∑
k exp(ok)

.

Exponential function, exp(oj) ensures non negativity

Dividing by their sum
∑

k exp(ok) ensures they sum up to 1.

Prediction:
argmax

j
ŷj = argmax

j
oj.

Dola Saha (UAlbany) Deep Learning 2021 50 / 128

Linear Neural Networks Softmax Regression

Loss Function

The softmax function outputs a vector ŷ, which can be interpreted as estimated conditional
probabilities of each class given any input x

ŷ = P(y = Category 1 | x)
For the entire dataset, P(Y | X) =

∏n
i=1 P(y(i) | x(i))

According to maximum likelihood estimation, we maximize P(Y | X)

This is equivalent to minimizing the negative log-likelihood

− logP(Y | X) =
∑n

i=1− logP(y(i) | x(i)) =∑n
i=1 l(y(i), ŷ(i))

For any pair of label y and model prediction ŷ over q classes, the loss function l is

l(y, ŷ) = −∑q
j=1 yj log ŷj – Cross Entropy Loss

y one-hot vector of length q, so sum over all its coordinates j vanishes for all except one term

ŷj are probabilities, so their logarithms are never greater than 0.

Dola Saha (UAlbany) Deep Learning 2021 51 / 128

Linear Neural Networks Softmax Regression

Softmax and Derivatives

Loss:

l(y, ŷ) = −
q∑

j=1

yj log
exp(oj)∑q

k=1 exp(ok)

=

q∑

j=1

yj log

q∑

k=1

exp(ok)−
q∑

j=1

yjoj

= log

q∑

k=1

exp(ok)−
q∑

j=1

yjoj.

Derivative:

∂oj l(y, ŷ) =
exp(oj)∑q

k=1 exp(ok)
− yj = softmax(o)j − yj.

Gradient is the difference between the observation and estimate

Dola Saha (UAlbany) Deep Learning 2021 52 / 128

Multi Layer Perceptron

Multi Layer Perceptron

Dola Saha (UAlbany) Deep Learning 2021 53 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Perceptron

An algorithm for supervised learning of binary classifiers
Binary classification outputs 0 or 1

– vs. scalar real value for regression
– vs. probabilities for logistic regression

Given input x, weight w and bias b, perceptron outputs:

o = σ (〈w, x〉+ b) σ(x) =

{
1 if x > 0
0 otherwise

Dola Saha (UAlbany) Deep Learning 2021 54 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Binary Classification

Figure: Example Application: Decoding
BPSK

initialize w = 0 and b = 0
repeat

if yi [hw, xii+ b] 0 then
w w + yixi and b b + yi

end if
until all classified correctly

Equals to SGD (batch size is 1) with the following
loss

`(y, x,w) = max(0,−y〈w, x〉)
Convergence Theorem: If a data set is linearly
separable, the Perceptron will find a separating
hyperplane in a finite number of updates.

Dola Saha (UAlbany) Deep Learning 2021 55 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Assumption of Linearity

Linearity is a strong assumption

XOR Problem (Minsky Papert, 1969): A perceptron cannot learn an XOR function

Wireless domain:
– Frequency response of a multipath channel
– Non-linear region of hardware

Dola Saha (UAlbany) Deep Learning 2021 56 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Multilayer Perceptrons or Feed Forward Networks

Multiple layers of perceptrons

The goal of a feedforward network is to approximate
some function f ∗

Defines a mapping y = f (x; θ) and learns the value of
the parameters θ that result in the best function
approximation.

These models are called feedforward
– Information flows through the function being

evaluated from x
– Intermediate computations used to define f
– Outputs y
– No feedback connections

Dola Saha (UAlbany) Deep Learning 2021 57 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Feed Forward Network

Called networks as they represent composition of many functions

Model can be represented by Directed Acyclic Graph

Functions connected in a chain: f (x) = f (3)
(
f (2)

(
f (1)(x)

))

f (i) is called the ith layer of the network

Length of chain is the depth of the network
– It is a Hyperparameter

Final layer is the output layer

Layers in between input and output are hidden layers
– training data does not show any output for each of these layers

Dola Saha (UAlbany) Deep Learning 2021 58 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Single Hidden Layer

Minibatch of n examples, each example has d inputs
(features)

Input: X ∈ Rn×d

One hidden layer with h hidden units.

Hidden variable: H ∈ Rn×h

Hidden layer
– weights: W(1) ∈ Rd×h

– biases: b(1) ∈ R1×h

Output layer with q units.

Output layer
– weights: W(2) ∈ Rh×q

– biases: b(2) ∈ R1×q

Dola Saha (UAlbany) Deep Learning 2021 59 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Single Hidden Layer

Outputs O ∈ Rn×q

H = XW(1) + b(1),

O = HW(2) + b(2).

Adding hidden layer requires tracking and updating
additional sets of parameters

Rewriting :

O = (XW(1)+b(1))W(2)+b(2) = XW(1)W(2)+b(1)W(2)+b(2) = XW+b

Can be represented by a single layer neural network

Still a Linear Model

Dola Saha (UAlbany) Deep Learning 2021 60 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Single Hidden Layer

Outputs O ∈ Rn×q

H = XW(1) + b(1),

O = HW(2) + b(2).

Adding hidden layer requires tracking and updating
additional sets of parameters

Rewriting :

O = (XW(1)+b(1))W(2)+b(2) = XW(1)W(2)+b(1)W(2)+b(2) = XW+b

Can be represented by a single layer neural network

Still a Linear Model

Dola Saha (UAlbany) Deep Learning 2021 60 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Non Linear Activation Function

A nonlinear activation function σ should be applied to
each hidden unit following the affine transformation

With activation functions, it is no longer possible to
collapse our MLP into a linear model

H = σ(XW(1) + b(1)),

O = HW(2) + b(2).

In general, with more hidden layers

H(1) = σ1(XW(1) + b(1))

H(2) = σ2(H(1)W(2) + b(2))

Dola Saha (UAlbany) Deep Learning 2021 61 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Activation Functions

Decide whether a neuron should be activated or not by
calculating the weighted sum and further adding bias
with it.

Need to be differentiable operators to transform input
signals to outputs

Adds non-linearity to the model

Dola Saha (UAlbany) Deep Learning 2021 62 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

ReLU Function

Rectified Linear Unit (ReLU): simple nonlinear
transformation

Given an element x, the function is defined as the
maximum of that element and 0

ReLU(x) = max(x, 0)

ReLU is piecewise linear

Deivative: f (x) =

{
0 if x < 0
1 if x > 0

, undefined at 0.

At x = 0, we default to the left-hand-side derivative

Figure: ReLU

Figure: Derivative of ReLU

Dola Saha (UAlbany) Deep Learning 2021 63 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Generalization of ReLU

Generalizations are based on the principle that models are easier to optimize if their behavior
is closer to linear
Add non-linear slope: αi, when xi < 0
hi = g(x,α)i = max (0, xi) + αi min (0, xi)
Leaky ReLU: Fixes αi to a small value like 0.01 (Maas et al., 2013)
parameterized ReLU (pReLU): Treats αi as a learnable parameter (He et al., 2015)
Maxout units: Divides x into groups of k values (Goodfellow et al., 2013)
g(x)i = maxj∈G(i) xj

Dola Saha (UAlbany) Deep Learning 2021 64 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Sigmoid Function

Transforms its inputs from domain R to outputs that
lie on the interval (0, 1).

sigmoid(x) = 1
1+exp(−x)

Smooth, differentiable approximation to a
thresholding unit

Derivative of the Sigmoid function:

d
dx

sigmoid(x) =
exp(−x)

(1 + exp(−x))2

= sigmoid(x) (1− sigmoid(x)) .

When the input is 0, the derivative of the sigmoid
function reaches a maximum of 0.25.

Figure: Sigmoid

Figure: Gradient of Sigmoid
Dola Saha (UAlbany) Deep Learning 2021 65 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Tanh (Hyperbolic Tangent) Function

Transforms its inputs from domain R to outputs that
lie on the interval (-1, 1).

tanh(x) = 1−exp(−2x)
1+exp(−2x)

As the input nears 0, it approaches a linear
transformation

Derivative of the Tanh function:
d
dx tanh(x) = 1− tanh2(x)

As the input nears 0, the derivative of the tanh
function approaches a maximum of 1

Figure: Tanh

Figure: Gradient of Tanh
Dola Saha (UAlbany) Deep Learning 2021 66 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Multiclass Classification

Outputs: y1, y2, . . . , yk = softmax(o1, o2, . . . , ok)

h = σ(W1x + b1)

o = wT
2 h + b2

y = softmax(o)

Dola Saha (UAlbany) Deep Learning 2021 67 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Multiclass Classification

y1, y2, . . . , yk = softmax(o1, o2, . . . , ok)

h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)

h3 = σ(W3h2 + b3)

o = W4h3 + b4

Dola Saha (UAlbany) Deep Learning 2021 68 / 128

Multi Layer Perceptron One Perceptron to Feed Forward Network

Solving the XOR Problem

One hidden layer with two hidden units

MSE loss function
J(θ) = 1

4
∑

x∈X (f ∗(x)− f (x;θ))2

ReLU Activation function

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x1

0

1

x
2

Original x space

0 1 2

h1

0

1
h
2

Learned h space

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left)A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right)In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

173

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

yy

hh

xx

W

w

yy

h1h1

x1x1

h2h2

x2x2

Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. (Right)In this style, we draw a node in the graph for
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrix W describes
the mapping from x to h, and a vector w describes the mapping from h to y. We
typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.

model, we used a vector of weights and a scalar bias parameter to describe an
affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x>W:,i + ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011a) defined by the activation
function g(z) = max{0, z} depicted in figure 6.3.

We can now specify our complete network as

f(x; W , c, w, b) = w>max{0, W>x + c} + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =

1 1
1 1

�
, (6.4)

c =

0
�1

�
, (6.5)

174

Dola Saha (UAlbany) Deep Learning 2021 69 / 128

Multi Layer Perceptron Training and Optimization

Architecture Basics

The Universal Approximation Theorem - [Hornik et al., 1989; Cybenko, 1989]
One hidden layer is enough to represent (not learn) an approximation of any function to an
arbitrary degree of accuracy

So why deeper Neural Network?
– Shallow net may need (exponentially) more width
– Shallow net may overfit moreCHAPTER 6. DEEP FEEDFORWARD NETWORKS

3 4 5 6 7 8 9 10 11

Number of hidden layers

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

T
es

t
ac

cu
ra

cy
(p

er
ce

n
t)

Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
et al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in chapter 9, use specialized patterns of sparse connections
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.

202

Dola Saha (UAlbany) Deep Learning 2021 70 / 128

Multi Layer Perceptron Training and Optimization

Generalization Error

Generalization: ability to perform well on previously unobserved inputs

Training Error: prediction error based on data available at training (like optimization)

Generalization Error / Testing Error: error on data not seen during testing

Machine Learning vs Optimization: In ML, we aim to minimize the generalization loss

Linear Regression Training Error:

1
m(train)

∥∥∥X(train)w− y(train)
∥∥∥

2

2
Linear Regression Testing Error:

1
m(test)

∥∥∥X(test)w− y(test)
∥∥∥

2

2
Machine Learning vs Optimization: In ML, we aim to minimize the generalization loss

Dola Saha (UAlbany) Deep Learning 2021 71 / 128

Multi Layer Perceptron Training and Optimization

Data Distribution

How can we affect performance on the test set when we get to observe only the training set?

Assumptions:
– training and test sets are not collected arbitrarily
– Independent and identically distributed (i.i.d. or IID)

+ examples in each dataset are independent from each other
+ train and test set are identically distributed (drawn from same probability distribution)

Under these assumptions: expected training set error = expected test set error

Training process: training dataset is used to choose the parameters that minimize the chosen
loss function

Test error ≥ Train error

Goal of ML algorithm:
– Make the training error small
– Make the gap between training and test error small

Dola Saha (UAlbany) Deep Learning 2021 72 / 128

Multi Layer Perceptron Training and Optimization

Underfitting vs Overfitting

Underfitting: the model is not able to obtain a sufficiently low error value on the training set

Overfitting: the gap between the training error and test error is too large

Capacity: ability to fit a wide variety of functions

CHAPTER 5. MACHINE LEARNING BASICS

have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
the task so it generalizes well to new data.

x0

y

Underfitting

x0

y

Appropriate capacity

x0
y

Overfitting

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left)A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center)A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right)A polynomial of degree 9 fit to
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as

113

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
rr

or

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x, the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = arg min ||Xi,: � x||22.
The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics (Goldberger et al., 2005). If the algorithm is
allowed to break ties by averaging the yi values for all Xi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a

115

No Free Lunch Theorem: [Wolpert, 1996] averaged over all possible data generating
distributions, every classification algorithm has the same error rate when classifying
previously unobserved points

Dola Saha (UAlbany) Deep Learning 2021 73 / 128

Multi Layer Perceptron Training and Optimization

Regularization

Weight Decay: Reduce model complexity by limiting value range

Original loss of linear regression:
– minimize the prediction loss on the training labels
– L(w, b) = 1

n

∑n
i=1

1
2

(
w>x(i) + b− y(i)

)2
.

Regularized loss:
– minimizing the sum of the prediction loss and the penalty term
– L(w, b) + λ

2 ‖w‖2

Weight Updates:
– w← (1− ηλ)w− η

|B|
∑

i∈B x(i)
(
w>x(i) + b− y(i)

)
.

Optimization algorithm decays the weight at each step of training

Dola Saha (UAlbany) Deep Learning 2021 74 / 128

Multi Layer Perceptron Training and Optimization

Effect of Regularization

Train a high-degree polynomial regression model

Regularization is any modification we make to a learning algorithm that is intended to reduce its
generalization error but not its training error.

Dola Saha (UAlbany) Deep Learning 2021 75 / 128

Multi Layer Perceptron Training and Optimization

Training Neural Networks

Minibatch Stochastic Gradient Descent

Forward Propagation: calculation and
storage of intermediate variables (including
outputs) in order from the input layer to the
output layer

Backward Propagation: method of
calculating the gradient of neural network
parameters for the weights to be updated

Dola Saha (UAlbany) Deep Learning 2021 76 / 128

Multi Layer Perceptron Training and Optimization

Forward Propagation

Simple Assumptions:
– Input: x ∈ Rd

– Intermediate variable: z ∈ Rh

– Weight parameter of the hidden layer: W(1) ∈ Rh×d

– Before activation: z = W(1)x, when hidden terms do not have a bias
– After passing through activation function (φ):

hidden variable h = φ(z)
– Weight parameter of output layer: W(2) ∈ Rq×h

– Output layer variable: o = W(2)h
– Loss function: L = l(o, y)

Dola Saha (UAlbany) Deep Learning 2021 77 / 128

Multi Layer Perceptron Training and Optimization

Computational Graph

A formal way to represent math in graph
theory

Each node represents a variable (a scalar,
vector, matrix, tensor) or an operation

Operation: a simple function of one or more
variables

Directed edge: input and output relations of
operators and variables

Example
– (a) Multiplication
– (b) Logistic regression
– (c) ReLU layer
– (d) Linear regression and weight decay

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx yy

(a)

⇥

xx ww

(b)

u(1)u(1)

dot

bb

u(2)u(2)

+

ŷ̂y

�

(c)

XX WW

U (1)U (1)

matmul

bb

U (2)U (2)

+

HH

relu

xx ww

(d)

ŷ̂y

dot

��

u(1)u(1)

sqr

u(2)u(2)

sum

u(3)u(3)

⇥

Figure 6.8: Examples of computational graphs. (a)The graph using the ⇥ operation to
compute z = xy. (b)The graph for the logistic regression prediction ŷ = �

�
x>w + b

�
.

Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u(i). (c)The
computational graph for the expression H = max{0, XW + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X. (d)Examples a–c applied at most one operation to each variable, but it
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make both the prediction ŷ and the weight decay penalty �

P
i w2

i .

206

Dola Saha (UAlbany) Deep Learning 2021 78 / 128

Multi Layer Perceptron Training and Optimization

Backpropagation

A method of calculating the gradient of
neural network parameters

Computes the chain rule of calculus

Stores any intermediate variables (partial
derivatives)

Done by table filling

Brings down the complexity from O
(
n2
)

to
O (n)

Dola Saha (UAlbany) Deep Learning 2021 79 / 128

Multi Layer Perceptron Training and Optimization

Backpropagation
CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

zz

xx

yy

ww

f

f

f

dz

dy

dz

dy

f 0

dy

dx

dy

dx

f 0
dz

dx

dz

dx

⇥

dx

dw

dx

dw

f 0
dz

dw

dz

dw

⇥

Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
this approach, the back-propagation algorithm does not need to ever access any actual
specific numeric values. Instead, it adds nodes to a computational graph describing how
to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left)In this example, we begin with a graph
representing z = f(f(f(w))). (Right)We run the back-propagation algorithm, instructing
it to construct the graph for the expression corresponding to dz

dw . In this example, we do
not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

Some approaches to back-propagation take a computational graph and a set
of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch
(Collobert et al., 2011b) and Caffe (Jia, 2013).

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This
is the approach taken by Theano (Bergstra et al., 2010; Bastien et al., 2012)
and TensorFlow (Abadi et al., 2015). An example of how this approach works
is illustrated in figure 6.10. The primary advantage of this approach is that
the derivatives are described in the same language as the original expression.
Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher
derivatives. Computation of higher-order derivatives is described in section 6.5.10.

We will use the latter approach and describe the back-propagation algorithm in

214

Figure: Symbol-to-symbol approach to computing
derivatives

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

XX W (1)W (1)

U (1)U (1)

matmul

HH

relu

U (3)U (3)

sqr
u(4)u(4)

sum

��u(7)u(7)W (2)W (2)

U (2)U (2)

matmul

yy

JMLEJMLE

cross_entropy

U (5)U (5)

sqr
u(6)u(6)

sum

u(8)u(8)

JJ

+

⇥

+

Figure 6.11: The computational graph used to compute the cost used to train our example
of a single-layer MLP using the cross-entropy loss and weight decay.

The other path through the cross-entropy cost is slightly more complicated.
Let G be the gradient on the unnormalized log probabilities U (2) provided by
the cross_entropy operation. The back-propagation algorithm now needs to
explore two different branches. On the shorter branch, it adds H>G to the
gradient on W (2), using the back-propagation rule for the second argument to
the matrix multiplication operation. The other branch corresponds to the longer
chain descending further along the network. First, the back-propagation algorithm
computes rHJ = GW (2)> using the back-propagation rule for the first argument
to the matrix multiplication operation. Next, the relu operation uses its back-
propagation rule to zero out components of the gradient corresponding to entries
of U (1) that were less than 0. Let the result be called G0. The last step of the
back-propagation algorithm is to use the back-propagation rule for the second
argument of the matmul operation to add X>G0 to the gradient on W (1).

After these gradients have been computed, it is the responsibility of the gradient
descent algorithm, or another optimization algorithm, to use these gradients to
update the parameters.

For the MLP, the computational cost is dominated by the cost of matrix
multiplication. During the forward propagation stage, we multiply by each weight

220

Figure: Cross entropy loss for forward propagation

Dola Saha (UAlbany) Deep Learning 2021 80 / 128

Multi Layer Perceptron Training and Optimization

Loss Function and Gradient Descent

Loss function should be convex.

CHAPTER 4. NUMERICAL COMPUTATION

Minimum Maximum Saddle point

Figure 4.2: Examples of each of the three types of critical points in 1-D. A critical point is
a point with zero slope. Such a point can either be a local minimum, which is lower than
the neighboring points, a local maximum, which is higher than the neighboring points, or
a saddle point, which has neighbors that are both higher and lower than the point itself.

so it is not possible to increase f(x) by making infinitesimal steps. Some critical
points are neither maxima nor minima. These are known as saddle points. See
figure 4.2 for examples of each type of critical point.

A point that obtains the absolute lowest value of f(x) is a global minimum.
It is possible for there to be only one global minimum or multiple global minima of
the function. It is also possible for there to be local minima that are not globally
optimal. In the context of deep learning, we optimize functions that may have
many local minima that are not optimal, and many saddle points surrounded by
very flat regions. All of this makes optimization very difficult, especially when the
input to the function is multidimensional. We therefore usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense. See
figure 4.3 for an example.

We often minimize functions that have multiple inputs: f : Rn ! R. For the
concept of “minimization” to make sense, there must still be only one (scalar)
output.

For functions with multiple inputs, we must make use of the concept of partial
derivatives. The partial derivative @

@xi
f(x) measures how f changes as only the

variable xi increases at point x. The gradient generalizes the notion of derivative
to the case where the derivative is with respect to a vector: the gradient of f is the
vector containing all of the partial derivatives, denoted rxf(x). Element i of the
gradient is the partial derivative of f with respect to xi. In multiple dimensions,

84

CHAPTER 4. NUMERICAL COMPUTATION

x

f
(x

)

Ideally, we would like
to arrive at the global
minimum, but this
might not be possible.

This local minimum
performs nearly as well as
the global one,
so it is an acceptable
halting point.

This local minimum performs
poorly and should be avoided.

Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.
The directional derivative in direction u (a unit vector) is the slope of the

function f in direction u. In other words, the directional derivative is the derivative
of the function f(x + ↵u) with respect to ↵, evaluated at ↵ = 0. Using the chain
rule, we can see that @

@↵f(x + ↵u) evaluates to u>rxf(x) when ↵ = 0.
To minimize f , we would like to find the direction in which f decreases the

fastest. We can do this using the directional derivative:

min
u,u>u=1

u>rxf(x) (4.3)

= min
u,u>u=1

||u||2||rxf(x)||2 cos ✓ (4.4)

where ✓ is the angle between u and the gradient. Substituting in ||u||2 = 1 and
ignoring factors that do not depend on u, this simplifies to minu cos ✓. This is
minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent or gradient descent.

Steepest descent proposes a new point

x0 = x� ✏rxf(x) (4.5)

85

Dola Saha (UAlbany) Deep Learning 2021 81 / 128

Convolutional Neural Network

Convolutional Neural Network

Dola Saha (UAlbany) Deep Learning 2021 82 / 128

Convolutional Neural Network

Scalability of Feed Forward Network

Example Application: Distinguish cat and dog
– Phone camera (12MP)
– RGB image has 36M elements
– Single hidden layer of 100 hidden neurons
– The model size is 3.6 Billion parameters
– Infeasible to learn these many parameters

Reduce size of image (1MP)
– Hidden layer size is underestimated
– Requires enormous dataset

Convolutional Neural Networks(CNNs) are designed
to build efficient models

Dola Saha (UAlbany) Deep Learning 2021 83 / 128

Convolutional Neural Network

Scalability of Feed Forward Network

Example Application: Distinguish cat and dog
– Phone camera (12MP)
– RGB image has 36M elements
– Single hidden layer of 100 hidden neurons
– The model size is 3.6 Billion parameters
– Infeasible to learn these many parameters

Reduce size of image (1MP)
– Hidden layer size is underestimated
– Requires enormous dataset

Convolutional Neural Networks(CNNs) are designed
to build efficient models

Dola Saha (UAlbany) Deep Learning 2021 83 / 128

Convolutional Neural Network

Scalability of Feed Forward Network

Example Application: Distinguish cat and dog
– Phone camera (12MP)
– RGB image has 36M elements
– Single hidden layer of 100 hidden neurons
– The model size is 3.6 Billion parameters
– Infeasible to learn these many parameters

Reduce size of image (1MP)
– Hidden layer size is underestimated
– Requires enormous dataset

Convolutional Neural Networks(CNNs) are designed
to build efficient models

Dola Saha (UAlbany) Deep Learning 2021 83 / 128

Convolutional Neural Network

Two Principles

Translation Invariance: network should respond
similarly to the same patch, regardless of where
it appears in the image

Locality: network should focus on local regions,
without regard for the contents of the image in
distant regions

Dola Saha (UAlbany) Deep Learning 2021 84 / 128

Convolutional Neural Network

Convolutional Neural Network

Neural networks that use convolution in place of general matrix multiplication in at least one
of their layers
Convolution:

– s(t) =
∫

x(a)w(t − a)da
– s(t) = (x ∗ w)(t) – denoted by asterisk
– In ML terminology, x is input and w is kernel or filter
– Measure of the overlap between f and g when one function is “flipped” and shifted by t
– Discrete representation:

s(t) = (x ∗ w)(t) =
∑∞

a=−∞ x(a)w(t − a)
– On finite input:

s(t) = (x ∗ w)(t) =
∑

a x(a)w(t − a)
– On two dimensional input I and kernel K,

S(i, j) = (I ∗ K)(i, j) =
∑

m
∑

n I(m, n)K(i− m, j− n)
S(i, j) = (K ∗ I)(i, j) =

∑
m
∑

n I(i−m, j− n)K(m, n) – commutative, easy to implement
Dola Saha (UAlbany) Deep Learning 2021 85 / 128

Convolutional Neural Network

Convolution vs Cross Correlation

Cross Correlation:
S(i, j) = (I ∗ K)(i, j) =∑

m
∑

n I(i + m, j + n)K(m, n)

Same as convolution, without flipping
kernel

No difference in practice due to symmetry

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

Figure: Cross Correlation.

Dola Saha (UAlbany) Deep Learning 2021 86 / 128

Convolutional Neural Network

Convolution Layer

Input Matrix: I : nh × nw

Kernel Matrix: K : kh × kw

Scalar Bias: b

Output Matrix:
S : (nh − kh + 1)× (nw − kw + 1)

S = I ?K + b

K and b are learnable parameters

Common choice: kh or kw are odd (1, 3, 5,
7).

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

Figure: 2-D convolution without kernel-flipping.
Dola Saha (UAlbany) Deep Learning 2021 87 / 128

Convolutional Neural Network

Padding

Given a 32 x 32 input image

Apply convolutional layer with 5 x 5 kernel

28 x 28 output with 1 layer

4 x 4 output with 7 layers

Shape decreases faster with larger kernels

Shape reduces from nh × nw to
(nh − kh + 1)× (nw − kw + 1)

Padding adds rows/columns around input

Padding ph rows and pw columns, output
shape will be
(nh − kh + ph + 1)× (nw − kw + pw + 1)

Common choice: ph = kh − 1, pw = kw − 1
– Odd kh: pad ph/2 on both sides
– Even kh: pad dph/2e on top, bph/2c on

bottom

Dola Saha (UAlbany) Deep Learning 2021 88 / 128

Convolutional Neural Network

Padding

Given a 32 x 32 input image

Apply convolutional layer with 5 x 5 kernel

28 x 28 output with 1 layer

4 x 4 output with 7 layers

Shape decreases faster with larger kernels

Shape reduces from nh × nw to
(nh − kh + 1)× (nw − kw + 1)

Padding adds rows/columns around input

Padding ph rows and pw columns, output
shape will be
(nh − kh + ph + 1)× (nw − kw + pw + 1)

Common choice: ph = kh − 1, pw = kw − 1
– Odd kh: pad ph/2 on both sides
– Even kh: pad dph/2e on top, bph/2c on

bottom

Dola Saha (UAlbany) Deep Learning 2021 88 / 128

Convolutional Neural Network

Stride

Padding reduces shape linearly with number
of layers:

– a 224× 224 input with a 5× 5 kernel,
needs 44 layers to reduce the shape to 4×4

– Still large amount of computation

Stride: number of rows and columns
traversed per slide Figure: Stride 3 and 2 for height and width

With strides sh and sw, output shape:
b(nh − kh + ph + sh)/shc × b(nw − kw + pw + sw)/swc
With ph = kh − 1, pw = kw − 1
b(nh + sh − 1)/shc × b(nw + sw − 1)/swc
If input height/width are divisible by strides
(nh/sh)× (nw/sw)

Dola Saha (UAlbany) Deep Learning 2021 89 / 128

Convolutional Neural Network

Convolution with stride
CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s1s1 s2s2

x4x4 x5x5

s3s3

x1x1 x2x2 x3x3

z2z2z1z1 z3z3

x4x4

z4z4

x5x5

z5z5

s1s1 s2s2 s3s3

Strided
convolution

Downsampling

Convolution

Figure 9.12: Convolution with a stride. In this example, we use a stride of two.
(Top)Convolution with a stride length of two implemented in a single operation. (Bot-
tom)Convolution with a stride greater than one pixel is mathematically equivalent to
convolution with unit stride followed by downsampling. Obviously, the two-step approach
involving downsampling is computationally wasteful, because it computes many values
that are then discarded.

350

Figure: Equivalent Models

Dola Saha (UAlbany) Deep Learning 2021 90 / 128

Convolutional Neural Network

Multiple Input Channels

Channel: another dimension in tensor
– Wireless Signals: Real/Imaginary
– Image: RGB

Have a kernel for each channel, and then
sum results over channels
Input: X : ci × nh × nw

Kernel: W : ci × kh × kw

Output: Y : mh × mw

Y =
∑ci

i=0 Xi,:,: ?Wi,:,:

(1×1+2×2+4×3+5×4)+(0×0+1×1+3×2+4×3) = 56

Dola Saha (UAlbany) Deep Learning 2021 91 / 128

Convolutional Neural Network

Multiple Output Channels

Each output channel may recognize a
different pattern

A kernel for every output channel
Input: X : ci × nh × nw

Kernel: W : co × ci × kh × kw

Output: Y : co × mh × mw

Yi,:,: = X ?Wi,:,:,: for for i = 1, . . . , co

Dola Saha (UAlbany) Deep Learning 2021 92 / 128

Convolutional Neural Network

Pooling

Convolution is sensitive to position

Figure: Example: Vertical Edge Detection

Pooling over spatial regions produces
invariance to translation

Summarizes the responses over a whole
neighborhood

Calculate either maximum or average value
of the elements in the pooling window

Figure: Example: Max Pool

Dola Saha (UAlbany) Deep Learning 2021 93 / 128

Convolutional Neural Network

Pooling introduces invariance

Dola Saha (UAlbany) Deep Learning 2021 94 / 128

Convolutional Neural Network

Pooling with downsampling

Have similar padding and stride as
convolutional layers

Stride introduces downsampling

No learnable parameters

Apply pooling for each input channel to
obtain the corresponding output channel
No. output channels = No. input channels

CHAPTER 9. CONVOLUTIONAL NETWORKS

Large response
in pooling unit

Large response
in pooling unit

Large
response

in detector
unit 1

Large
response

in detector
unit 3

Figure 9.9: Example of learned invariances: A pooling unit that pools over multiple features
that are learned with separate parameters can learn to be invariant to transformations of
the input. Here we show how a set of three learned filters and a max pooling unit can learn
to become invariant to rotation. All three filters are intended to detect a hand-written 5.
Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in
the input, the corresponding filter will match it and cause a large activation in a detector
unit. The max pooling unit then has a large activation regardless of which detector unit
was activated. We show here how the network processes two different inputs, resulting
in two different detector units being activated. The effect on the pooling unit is roughly
the same either way. This principle is leveraged by maxout networks (Goodfellow et al.,
2013a) and other convolutional networks. Max pooling over spatial positions is naturally
invariant to translation; this multi-channel approach is only necessary for learning other
transformations.

0.1 1. 0.2

1. 0.2

0.1

0.1

0.0 0.1

Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor
of two, which reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included if we do not
want to ignore some of the detector units.

344

Figure: Max-pooling with a pool window of 3 and a
stride of 2

Dola Saha (UAlbany) Deep Learning 2021 95 / 128

Convolutional Neural Network

Convolutional Layer

Consists of three stages:
Convolution: several convolutions in
parallel to produce a set of linear
activations
Detector: each linear activation is run
through a nonlinear activation function
Pooling: replaces the output with a
summary statistic of the nearby outputs

CHAPTER 9. CONVOLUTIONAL NETWORKS

Convolutional Layer

Input to layer

Convolution stage:
Affine transform

Detector stage:
Nonlinearity

e.g., rectified linear

Pooling stage

Next layer

Input to layers

Convolution layer:
Affine transform

Detector layer: Nonlinearity
e.g., rectified linear

Pooling layer

Next layer

Complex layer terminology Simple layer terminology

Figure 9.7: The components of a typical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. (Left)In this terminology,
the convolutional net is viewed as a small number of relatively complex layers, with
each layer having many “stages.” In this terminology, there is a one-to-one mapping
between kernel tensors and network layers. In this book we generally use this terminology.
(Right)In this terminology, the convolutional net is viewed as a larger number of simple
layers; every step of processing is regarded as a layer in its own right. This means that
not every “layer” has parameters.

341

Dola Saha (UAlbany) Deep Learning 2021 96 / 128

Convolutional Neural Network

Convolution vs Fully Connected Network

Local Connections, no sharing of
parameters

Convolution

Fully Connected

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2

s1s1 s3s3

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

a b a b a b a b a

a b c d e f g h i

x4x4x3x3

s4s4s2s2

Figure 9.14: Comparison of local connections, convolution, and full connections.
(Top)A locally connected layer with a patch size of two pixels. Each edge is labeled with
a unique letter to show that each edge is associated with its own weight parameter.
(Center)A convolutional layer with a kernel width of two pixels. This model has exactly
the same connectivity as the locally connected layer. The difference lies not in which units
interact with each other, but in how the parameters are shared. The locally connected layer
has no parameter sharing. The convolutional layer uses the same two weights repeatedly
across the entire input, as indicated by the repetition of the letters labeling each edge.
(Bottom)A fully connected layer resembles a locally connected layer in the sense that each
edge has its own parameter (there are too many to label explicitly with letters in this
diagram). However, it does not have the restricted connectivity of the locally connected
layer.

353

Dola Saha (UAlbany) Deep Learning 2021 97 / 128

Convolutional Neural Network

LeNet [Yann LeCun et al. in 1989]

Dola Saha (UAlbany) Deep Learning 2021 98 / 128

Convolutional Neural Network

Modern Convolutional Neural Networks

LeNet (the first convolutional neural network)

AlexNet [2012]
– More of everything
– ReLu, Dropout, Invariances

VGG [2014]
– Repeated blocks: even more of everything (narrower and deeper)

NiN [2013]
– 1x1 convolutions + global pooling instead of dense

GoogLeNet [2015]
– Inception block: explores parallel paths with different kernels

Residual network (ResNet) [2016]
– Residual block: computes residual mapping f (x)− x in forward path

Dola Saha (UAlbany) Deep Learning 2021 99 / 128

Sequence Modeling

Sequence Modeling

Dola Saha (UAlbany) Deep Learning 2021 100 / 128

Sequence Modeling

Data

So far . . .

Collect observation pairs (xi, yi) ∼ p(x, y) for training

Estimate for y|x ∼ p(y|x) unseen x′ ∼ p(x)

Examples:
– Images & objects
– Regression problem
– House & house prices

The order of the data did not matter

Dola Saha (UAlbany) Deep Learning 2021 101 / 128

Sequence Modeling

Dependence on time

Natural Language Processing

Stock price prediction

Movie prediction

Wireless Applications:
– Change in wireless channel
– Channel Coding
– Secure waveform generation
– User mobility/beam prediction

Data usually is not independently and identically distributed (IID)

Dola Saha (UAlbany) Deep Learning 2021 102 / 128

Sequence Modeling

Autoregressive Model

Observations from previous time steps are input to a
regression model

Linear Regression: Y = wX + b

Number of inputs xt−1, . . . , x1 vary with t

First Strategy:
– Long sequence is not required
– xt−1, . . . , xt−τ are used

Second Strategy:
– Keep summary ht and update it every step
– Latent Autoregressive model, where

x̂t = P(xt | ht) and ht = g(ht−1, xt−1)

Figure: Latent Autoregressive Model

Dola Saha (UAlbany) Deep Learning 2021 103 / 128

Sequence Modeling

Sequence Model

Input xt, where t is discrete step in time t ∈ Z+

Dependent random variables
(x1, . . . xT) ∼ p(x)

Conditional Probability Expansion
p(x) = p(x1) · p(x2|x1) · p(x3|x1, x2) · . . . p(xT |x1, . . . xT−1)

Could also find reverse direction
p(x) = p(xT) · p(xT−1|xT) · p(xT−2|xT−1, xT) · . . . p(x1|x2, . . . xT)

Causality (physics) prevents the reverse direction (future events cannot influence the past)

Train with sequence of data (not randomized)

Dola Saha (UAlbany) Deep Learning 2021 104 / 128

Sequence Modeling

Recurrent Neural Networks

Neural Networks with hidden states

Hidden state (ht−1) capable of storing the sequence information
P(xt | xt−1, . . . , x1) ≈ P(xt | ht−1)

Hidden state computed as: ht = f (xt, ht−1).

Function f approximates all hidden information

Hidden State is different from Hidden Layer

Dola Saha (UAlbany) Deep Learning 2021 105 / 128

Sequence Modeling

Neural Network without Hidden State

With batch size n and width d input X ∈ Rn×d

Hidden layer output: H ∈ Rn×h

H = φ(XWxh + bh)

Activation function φ

Weight and bias of h hidden units:
Wxh ∈ Rd×h, bh ∈ R1×h

Output: O ∈ Rn×q

O = HWhq + bq,

Weight and bias of q output units:
Whq ∈ Rh×q, bq ∈ R1×q

This is similar to the autoregression problem

Dola Saha (UAlbany) Deep Learning 2021 106 / 128

Sequence Modeling

Recurrent Neural Network - with hidden state

Input Xt ∈ Rn×d

For a minibatch of size n, each row of Xt

corresponds to one example at time step t
from the sequence

Hidden variable of current time step
depends on input of the current time step
and hidden variable of the previous time
step
Ht = φ(XtWxh + Ht−1Whh︸ ︷︷ ︸

hidden state dependency

+bh)

Output:
Ot = HtWhq + bq.

Dola Saha (UAlbany) Deep Learning 2021 107 / 128

Sequence Modeling

RNN for Natural Language Processing

In 2003, Bengio et al. first proposed to use a neural network for language modeling
Tokenize text into characters

Figure: Character level language model

Dola Saha (UAlbany) Deep Learning 2021 108 / 128

Sequence Modeling

Loss Function for Softmax - Revisited

The softmax function outputs a vector ŷ, which can be interpreted as estimated conditional
probabilities of each class given any input x

ŷ = P(y = Category 1 | x)
For the entire dataset, P(Y | X) =

∏n
i=1 P(y(i) | x(i))

According to maximum likelihood estimation, we maximize P(Y | X)

This is equivalent to minimizing the negative log-likelihood

− logP(Y | X) =
∑n

i=1− logP(y(i) | x(i)) =∑n
i=1 l(y(i), ŷ(i))

For any pair of label y and model prediction ŷ over q classes, the loss function l is

l(y, ŷ) = −∑q
j=1 yj log ŷj – Cross Entropy Loss

y one-hot vector of length q, so sum over all its coordinates j vanishes for all except one term

ŷj are probabilities, so their logarithms are never greater than 0.

Dola Saha (UAlbany) Deep Learning 2021 109 / 128

Sequence Modeling

Loss Function for RNN

Which token to choose in the next time step?

Quality of the model can be measured by computing the likelihood of the sequence

Issue: shorter sequences are much more likely to occur than the longer ones

Solution: Cross-entropy loss averaged over all the n tokens of a sequence
1
n

∑n
t=1− logP(xt | xt−1, . . . , x1)

Perplexity in NLP: Harmonic mean of the number of real choices
exp

(
− 1

n

∑n
t=1 logP(xt | xt−1, . . . , x1)

)

– Best case: perplexity is 1.
– Worst case: perplexity is 0.
– Baseline: predicts a uniform distribution over all the available tokens

Dola Saha (UAlbany) Deep Learning 2021 110 / 128

Sequence Modeling

Gradients in RNN

Hidden and Output Layer: ht = f (xt, ht−1,wh), ot = g(ht,wo)

Chain of values that depend on recurrent computation: {. . . , (xt−1, ht−1, ot−1), (xt, ht, ot), . . .}
Forward propagation: Compute (xt, ht, ot) at each time step
Difference between output ot and label yt is:
L(x1, . . . , xT , y1, . . . , yT ,wh,wo) =

1
T

∑T
t=1 l(yt, ot)

Backward propagation (by Chain Rule):

∂L
∂wh

=
1
T

T∑

t=1

∂l(yt, ot)

∂wh

=
1
T

T∑

t=1

∂l(yt, ot)

∂ot

∂g(ht,wo)

∂ht

∂ht

∂wh︸︷︷︸
Recurrent computation needed

ht depends on ht−1 and wh

Dola Saha (UAlbany) Deep Learning 2021 111 / 128

Sequence Modeling

Backpropagation Through Time

Note: ht = f (xt, ht−1,wh)

Third Term of ∂L
∂wh

:
∂ht

∂wh
=
∂f (xt, ht−1,wh)

∂wh
+
∂f (xt, ht−1,wh)

∂ht−1

∂ht−1

∂wh

Can be written as three sequences:

at = bt +

t−1∑
i=1

 t∏
j=i+1

cj

 bi

at =
∂ht

∂wh
,

bt =
∂f (xt, ht−1,wh)

∂wh
,

ct =
∂f (xt, ht−1,wh)

∂ht−1

Dola Saha (UAlbany) Deep Learning 2021 112 / 128

Sequence Modeling

Backpropagation Through Time

BPTT:
∂ht

∂wh
=
∂f (xt, ht−1,wh)

∂wh
+

t−1∑
i=1

 t∏
j=i+1

∂f (xj, hj−1,wh)

∂hj−1

 ∂f (xi, hi−1,wh)

∂wh
.

Chain rule can be used to compute ∂ht/∂wh recursively

Chain gets long with t

Solution: truncate time steps [2002]

Dola Saha (UAlbany) Deep Learning 2021 113 / 128

Sequence Modeling

Backpropagation Through Time

Figure: Computational graph showing dependencies for an RNN model with three time steps

Dola Saha (UAlbany) Deep Learning 2021 114 / 128

Sequence Modeling

Gated Recurrent Unit (GRU)

Not all observations are equally relevant

Engineered Gates: Reset and Update
– Reset: mechanism to forget
– Update: mechanism to pay attention

Rt = σ(XtWxr + Ht−1Whr + br),

Zt = σ(XtWxz + Ht−1Whz + bz)

Dola Saha (UAlbany) Deep Learning 2021 115 / 128

Sequence Modeling

Gated Recurrent Unit (GRU)

Candidate Hidden State
H̃t = tanh(XtWxh+(Rt �Ht−1)Whh+bh)

Hidden State (incorporates update)
Ht = Zt �Ht−1 + (1− Zt)� H̃t

Dola Saha (UAlbany) Deep Learning 2021 116 / 128

Sequence Modeling

Long Short Term Memory (LSTM)

It = σ(XtWxi + Ht−1Whi + bi)

Ft = σ(XtWxf + Ht−1Whf + bf)

Ot = σ(XtWxo + Ht−1Who + bo)

C̃t = tanh(XtWxc + Ht−1Whc + bc)

Ct = Ft � Ct−1 + It � C̃t

Ht = Ot � tanh(Ct)

Dola Saha (UAlbany) Deep Learning 2021 117 / 128

Other Networks

Other Networks

Dola Saha (UAlbany) Deep Learning 2021 118 / 128

Other Networks

Autoencoder

Autoencoder:
an encoder function f : converts the input data into a
different representation
a decoder function g: converts the new representation
back into the original format

Bottleneck: Compressed knowledge representation

Unsupervised learning

Reconstruction Error: L(x, r) = L(x, g(f (x)))
Dimensionality Reduction

Without non-linear activation functions, performs
Principal Component Analysis (PCA)

Denoising Autoencoder: Input x̂ is corrupted x, and
reconstruction loss is L(x, g(f (x̂)))

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure of an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

503

Dola Saha (UAlbany) Deep Learning 2021 119 / 128

Other Networks

Generative Adversarial Network

Discriminative Models: Given input X, predict label Y
– Estimates P(Y|X)

Discriminative models have limitations:
– Can’t model P(X)
– Can’t sample from P(X), i.e. can’t generate new data

Generative Model:
– Can model P(X)
– Can generate P(X)

Dola Saha (UAlbany) Deep Learning 2021 120 / 128

Other Networks

Generative Adversarial Network [Goodfellow et al., 2014]

Leverages power of discriminative models to get good
generative models

A generator is good if we cannot tell fake data apart
from real data

Statistical Tests: identifies whether the two datasets
come from the same distribution

GAN: Based on the feedback from discriminator,
creates a generator until it generates something that
resembles the real data

Generator Network: Needs to generate data (signals,
images)

Discriminator Network: Distinguishes generated and
real data

Dola Saha (UAlbany) Deep Learning 2021 121 / 128

Other Networks

Generative Adversarial Network [Goodfellow et al., 2014]

Training Process
Networks compete with each other
Generator attempts to fool the Discriminator
Discriminator adapts to the new fake/generated data
This information is used to improve the generator

Discriminator:
A binary classifier, outputs a scalar prediction o ∈ R
Applies sigmoid function to obtain predicted
probability D(x) = 1/(1 + e−o)
The label y for true data is 1 and for fake data is 0
Train the discriminator to minimize the cross-entropy
loss: minD{−y logD(x)− (1− y) log(1− D(x))}

Dola Saha (UAlbany) Deep Learning 2021 122 / 128

Other Networks

Generative Adversarial Network [Goodfellow et al., 2014]

For a given discriminator D, update the parameters of
the generator G to maximize the cross-entropy loss
when y = 0
maxG{−(1− y) log(1− D(G(z)))} =
maxG{− log(1− D(G(z)))}
Conventionally, we minimize
minG{−y log(D(G(z)))} = minG{− log(D(G(z)))}
D and G are playing a “minimax” game with the
comprehensive objective function
minDmaxG{−Ex∼DatalogD(x)− Ez∼Noiselog(1−
D(G(z)))}

Dola Saha (UAlbany) Deep Learning 2021 123 / 128

Other Networks

Complex NN

Complex Convolution: W ∗ h = (A ∗ x− B ∗ y) + i(B ∗ x + A ∗ y)
ReLU:

– ModReLU

modReLU(z) = ReLU(|z|+ b)eiθz =

{
(|z|+ b) z

|z| if |z|+ b ≥ 0

0 otherwise
– CReLU

CRLU(z) = ReLU(<(z)) + iReLU(=(z))
– ZReLU

zReLU(z) =

{
z if θz ∈ [0, π/2]
0 otherwise

Dola Saha (UAlbany) Deep Learning 2021 124 / 128

Other Networks

Attention Based NN / Transformer

Dola Saha (UAlbany) Deep Learning 2021 125 / 128

Other Networks

Federated Learning

Dola Saha (UAlbany) Deep Learning 2021 126 / 128

Wireless Applications

Wireless Applications

Dola Saha (UAlbany) Deep Learning 2021 127 / 128

Wireless Applications

Wireless Applications

Signal Detection

Channel Encoding and Decoding

Channel Estimation, Prediction, and Compression

End-to-End Communications and Semantic Communications

Distributed and Federated Learning and Communications

Resource Allocation

RF Fingerprinting

Federated Learning

Waveform Generation

https://www.comsoc.org/publications/best-readings/machine-learning-communications

Dola Saha (UAlbany) Deep Learning 2021 128 / 128

https://www.comsoc.org/publications/best-readings/machine-learning-communications

	Introduction
	Machine Learning Basics
	Linear Algebra
	Probability
	Calculus

	Linear Neural Networks
	Linear Regression
	Softmax Regression

	Multi Layer Perceptron
	One Perceptron to Feed Forward Network
	Training and Optimization

	Convolutional Neural Network
	Sequence Modeling
	Other Networks
	Wireless Applications

