Modern Wireless Networks

5G Physical Layer

IECE 574– Spring 2021 Prof. Dola Saha

Spectrum Flexibility

- FDD uplink and downlink happens in different (paired) frequency bands, but same time frame
- TDD uplink and downlink happens same frequency bands, but in nonoverlapping FDD time slots
- Half-duplex FDD transmission and reception at a specific device are separated in both frequency and time. BS still uses full-duplex FDD as it simultaneously may schedule different devices in uplink and downlink

LTE Signal

- > OFDM-based transmission for both uplink and downlink
- > Was developed for outdoor cellular deployments up to ~3GHz carrier frequency
- > 15KHz subcarrier spacing
- > 4.7microsecond CP

5G NR Waveform Specifications

Table 7.1 Subcarrier Spacings Supported by NR

Subcarrier Spacing (kHz)	Useful Symbol Time, <i>T</i> _u (μs)	Cyclic Prefix, T_{CP} (µs)
15	66.7	4.7
30	33.3	2.3
60	16.7	1.2
120	8.33	0.59
240	4.17	0.29

> Number of subcarriers: 128-2048

Bandwidth Mapping

Bandwidth	Resource Blocks	Subcarriers (downlink)	Subcarriers (uplink)
1.4MHz	6	73	72
3MHz	15	181	180
5MHz	25	301	300
10MHz	50	601	600
15MHz	75	901	900
20MHz	100	1201	1200
	6 RB = 1.4MH ◀━━━►	łz	
			
•			frequency
SIT			

110 RB = 20MHz

Channel Parameters

Channel Bandwidth (MHz)	1.25	2.5	5	10	15	20	
Frame Duration (ms)		10					
Subframe Duration (ms)			1	L			
Sub-carrier Spacing (kHz)			1	5			
Sampling Frequency (MHz)	1.92	3.84	7.68	15.36	23.04	30.72	
FFT Size	128	256	512	1024	1536	2048	
Occupied Sub-carriers (inc. DC sub-carrier)	76	151	301	601	901	1201	
Guard Sub-carriers	52	105	211	423	635	847	
Number of Resource Blocks	6	12	25	50	75	100	
Occupied Channel Bandwidth (MHz)	1.140	2.265	4.515	9.015	13.515	18.015	
DL Bandwidth Efficiency	77.1%	90%	90%	90%	90%	90%	
OFDM Symbols/Subframe	7/6 (short/long CP)						
CP Length (Short CP) (µs)	5.2 (first symbol) / 4.69 (six following symbols)						
CP Length (Long CP) (μ s)	16.67						

LTE Frame Structure

Questions?

> Why the first OFDM symbol has longer CP?> When is extended CP used?

Resource

- Resource Element:
 - one subcarrier & one OFDM symbol

BW) ш

(min

subcarriers

72

One radio frame = 10 ms

•••••

Unit of Scheduling

Basic time-domain unit for dynamic scheduling in LTE is one subframe (or two slots)

Resource block pair - minimum scheduling unit, consisting of two time-consecutive resource blocks within one subframe

Frequency domain Structure

> Unused DC subcarrier in downlink

Carrier Center Frequency

- > Unused DC subcarrier in downlink
 - Coincides with carrier center frequency
 - Interference from local oscillator leakage
- > Uplink
 - Center frequency is located between two uplink sub-carriers

Half Duplex Device

- Requires guard band
 - to switch between Tx and Rx
 - Decay downlink signal
- > Type A

- allow device to skip receiving the last OFDM symbol(s) in a downlink
- BS assigns an appropriate timing advance value to UE
- > Type B
 - Whole subframe used as guard
 - Added in LTE Release 12, for MTC

Guard from appropri

timing advance

7 configurations

TDD

State University of New York

Uplink-Downlink Configuration

- > It is provided as part of the system information
- > Seldom changed, and is used in each frame
- To avoid severe interference between different cells, neighboring cells typically have the same uplink-downlink configuration
- Release 12 introduced the possibility to dynamically change the uplink-downlink configurations per frame
- Dynamic reconfiguration is useful in small and relatively isolated cells where the traffic variations can be large and inter-cell interference is less of an issue

Downlink Physical Layer Processing

- downlink shared channel (DL-SCH)
- > multicast channel (MCH)
- > paging channel (PCH)
- > broadcast channel (BCH)

Mapping to OFDM time-frequency grid for each antenna port

One or two transport block(s) of

Transmission Time Interval (TTI)

- Transport blocks may be passed down from the MAC layer to the physical layer once per Transmission Time Interval (TTI)
- TTI is 1 ms, corresponding to the subframe duration
- Smallest Scheduling Interval

CRC & Segmentation

- CRC Insertion per Transport Block
 - 24-bit CRC is calculated & appended to each transport block, triggers H-ARQ/reTx
- Code-Block Segmentation & per-Code-Block CRC Insertion
 - Turbo-coder internal interleaver is defined for a maximum block size of 6144 bits
 - If Transport Block + CRC > 6144, then code-block segmentation is applied
 - CRC per code block
 - Early error detection

Channel Coding

- Turbo Coding with QPP (Quadratic Polynomial Permutation) interleaver
- decoding can be parallelized
- different parallel processes can access the interleaver memory
- ▶ *K* can be 40-6144 bits
- > f_1 and f_2 depend on the code-block size K

C. Schlegel, Trellis and Turbo Coding, Wiley, IEEE Press, Chichester, UK, March 2004.

Rate Matching & Hybrid ARQ

- Outputs of Turbo encoder are separately interleaved
- Interleaved bits are inserted into circular buffer (order)
- Bit selection extracts consecutive bits that matches the number of available resource blocks
- A Redundancy
 Version (RV) specifies
 a starting point to start reading out bits.

UNIVERSITYATALBANY

State University of New York

Circular buffer

Scrambling, Modulation & Mapping

> Bit level scrambling

- input bit sequence undergoes a bit-wise XOR operation with a cell specified pseudo-random sequence generated by length-31 Gold sequence generator
- Reduces interference from adjacent cells, full utilization of channel coding

> Data Modulation

- QPSK, 16QAM, 64QAM, 256 QAM (added in Release 12)
- No BPSK

> Antenna Mapping & Resource Block Allocation

Transmission Modes (10)

- Transmission mode 1: Single-antenna transmission
- *Transmission mode 2*: Transmit diversity
- *Transmission mode 3*: *Open-loop* codebook-based precoding in the case of more than one layer, transmit diversity in the case of rank-one transmission
- Transmission mode 4: Closed-loop codebook-based precoding
- Transmission mode 5: MU-MIMO version of transmission mode 4
- *Transmission mode 6*: Special case of closed-loop codebook-based precoding limited to single-layer transmission
- *Transmission mode 7*: Non-codebook-based precoding supporting single-layer PDSCH transmission
- *Transmission mode 8*: Non-codebook-based precoding supporting up to two layers (introduced in LTE release 9)
- *Transmission mode 9*: Non-codebook-based precoding supporting up to eight layers (extension of transmission mode 8, introduced in LTE release 10)
- *Transmission mode 10*: Extension of transmission mode 9 for enhanced support of different means of downlink multi-point coordination and transmission, also referred to as CoMP (introduced in LTE release 11)

Downlink Reference Signals

- > Predefined signals in downlink resource element
 - Cell specific reference signals (CRS)
 - Demodulation reference signals (DM-RS)
 - CSI reference signals (CSI-RS)
 - MBSFN reference signals
 - Positioning reference signals

Cell Specific Reference (CRS) Signals

- Provides channel estimates for demodulating downlink control channels
- > Design Background
 - Structure
 - Spacing in time
 - Spacing in frequency

CRS Arrangement

- In an OFDM-based system an equidistant arrangement of reference symbols in the lattice structure achieves the Minimum Mean-Squared Error (MMSE) estimate of the channel
- In the case of a uniform reference symbol grid, a 'diamond shape' in the time-frequency plane can be shown to be optimal

CRS – Spacing in Time

- LTE designed to support high mobility 500Km/hr
- > Doppler Shift $f_D = (f_c v/c)$
- Considering
 - $f_c = 2GHz, v = 500Km/hr, c = (3.10^8m/sec)$
 - $f_D \approx 950 Hz$
- According to Nyquist's sampling theorem, the minimum sampling frequency needed in order to reconstruct the channel is given by
 - $T_C = 1/(2f_D) \approx 0.5ms$ (1 slot)
- > Hence 2 CRS added per slot

CRS – Spacing in Frequency

- > Depends on Coherence Bandwidth \rightarrow channel delay spread
- > Coherence bandwidth considering maximum r.m.s channel delay spread of $\sigma_T = 991ms$
 - $B_{C,90\%} = \frac{1}{50\sigma_T} = 20 KHz$
 - $B_{C,50\%} = \frac{1}{5\sigma_T} = 200 KHz$
- > In LTE, one reference symbol every six subcarriers (90KHz)
- Reference symbols (RS) are staggered, such that there is a reference symbol for every 3 subcarriers (45KHz)

Multiple Antenna Ports

- Antenna port is logical concept, not a physical concept (meaning 'Antenna port' is not the same as 'Physical Antenna')
- > 1, 2 or 4 antenna ports can be used
- UE can derive 4 separate channel estimates
- Different RS pattern for each antenna port
- If a RE is used to transmit RS on antenna port, it is set to zero in other antenna ports to reduce intra-cell interference

UNIVERSITYAT ALBANY

State University of New York

Modulation

> All RS are QPSK modulated

$$r_{l,n_{\rm s}}(m) = \frac{1}{\sqrt{2}} [1 - 2c(2m)] + j \frac{1}{\sqrt{2}} [1 - 2c(2m+1)]$$

- > *m* is the index of the RS, n_s is the slot number within the radio frame and *l* is the symbol number within the time slot
- The pseudo-random sequence c(i) is comprised of a length-31 Gold sequence
- > Different initialization values depending on the type of RSs
- > The sequence value depends on cell identity N_{ID}^{cell} (504 IDs)
- > PAPR is kept low

Cell Identity

- ➢ There are 504 (0-503) different cell identities
- > A cell-specific frequency shift is applied to the patterns of reference symbols, given by $N_{ID}^{cell}mod 6$
- Each shift is associated with 84 different cell identities (6 x 84 = 504)
- Shift helps to avoid time-frequency collisions between cell-specific RSs from up to six adjacent cells
- Reference-signal power boosting: reference symbols are transmitted with higher energy to improve the reference-signal SIR

Demodulation Reference Signals

- Transmitted within the resource blocks assigned for transmission to a particular device (UE Specific)
- > Transmitted in addition to the cell-specific RSs
- > UE is expected to use them to derive the channel estimate for demodulating the data
- To enable beamforming of the data transmission to a specific UE – uses same precoding as data

DM-RS Signal Structure

- > 12 reference symbols within a resource-block pair
- > Interference between the reference signals is avoided by applying mutually orthogonal patterns, referred to as orthogonal cover codes (OCC)
- > Enables MU-MIMO

State University of New York

CSI Reference Signals

- CSI-RS were introduced in LTE release 10
- > Used by UE to acquire CSI (transmission mode 9 & 10)
- Supports up to eight-layers spatial multiplexing
- CSI-RS is transmitted on different antenna ports (15-22) than C-RS (although likely sharing physical antennas with other antenna ports), and instead of using only time/frequency orthogonality like C-RS, CSI-RS uses code-domain orthogonality as well.

Reason for separate C-RS and CSI-RS

> the function to acquire detailed channel estimates for coherent demodulation of different downlink transmissions

> the function to acquire CSI for, for example, downlink link adaptation and scheduling

Earlier release relied on CRS only

Downlink L1/L2 Control Signaling

- Information originates from Layer 1 & Layer 2
 - Uplink and Downlink Scheduling assignments
 - Information to receive, decode the user specific downlink data
 - Power control commands for uplink
 - Hybrid ARQ Acknowledgments

Control Region

Control Region can be

- 1, 2 or 3 OFDM symbols for system bandwidth > 10MHz
- 2, 3 or 4 OFDM symbols for system bandwidth <=10MHz
- > Size of control region can be varied per subframe
 - Depends on active number of users and their traffic pattern
- Control at start of subframe allows early reception of decoding information at UE

Control region UNIVERSITY AT (1-3 OFDM symbols)

Cell-specific reference symbols

Mapping Logical to Physical Channels

Physical Channels

- 1. Physical Control Format Indicator CHannel (PCFICH)
- Size of control region
- 2. Physical Hybrid-ARQ Indicator CHannel (PHICH)
- Hybrid-ARQ ACKs
- 3. Physical Downlink Control CHannel (PDCCH)
- Downlink & Uplink Scheduling, Power Control
- 4. Enhanced Physical Downlink Control CHannel (EPDCCH)
- DM-RS based signaling, transmitted in Data Region (release 11)
- 5. MTC Physical Downlink Control CHannel (MPDCCH)
- For MTC devices (release 13)
- 6. Relay Physical Downlink Control CHannel (R-PDCCH)
- To support relay (release 10)

Physical Control Format Indicator

- > Two bits of information (control region sizes)
- > Transmitted in groups of 4 REs
- > REs are separated in frequency to achieve diversity
- Location of four groups depends on Physical Layer Cell Identity

Map PCFICH

- Each quadruplet is mapped onto a resource element group (REG)
- Four Quadruplets are created
- First quadruplet is mapped onto a REG with
 - subcarrier index $k = (N_{SC}^{RB}/2) \cdot (N_C \mod 2N_{RB})$
 - $N_{SC}^{RB} = 12$ (12 subcarriers per Resource Block)
 - N_{RB} is the cell bandwidth expressed in multiples of N_{SC}^{RB}
 - N_C is the cell ID
- Subsequent three quadruplets are mapped onto REGs spaced at intervals of [N_{RB}/2]. (N^{RB}_{SC}/2)

Cell ID based PCFICH Mapping

PCFICH Mapping in different cell ID Reduces risk of inter-cell PCFICH collision

Cell ID 0 Cell ID 1 Cell ID 2

Physical Hybrid-ARQ Indicator

- Transmission of hybrid-ARQ acknowledgments in response to UL- SCH transmission
- > PHICH is a one-bit information commanding a retransmission on the UL-SCH
- > HARQ indicator is set to
 - o for a positive ACKnowledgement (ACK)
 - 1 for a Negative ACKnowledgement (NACK)
- > Multiple PHICHs are mapped to the same set of REs
- A set of PHICHs transmitted on the same set of resource elements is called a PHICH group

PHICH Generation

Physical Downlink Control Channel

- Carries Downlink Control Information (DCI)
- > Different format
- > Sizes varies based on cell bandwidth
 - Larger bandwidth cell require a larger number of bits to indicate the resource-block allocation

DCI Format (Sizes are for 20MHz)

	DCI Format	Example Size (Bits)	Usage
Uplink	0	45	Uplink scheduling grant
_	4	53	Uplink scheduling grant with spatial multiplexing
	6-0A, 6-0B	46, 36	Uplink scheduling grant for eMTC devices (see Chapter 20)
Downlink	1C	31	Special purpose compact assignment
	1A	45	Contiguous allocations only
	1B	46	Codebook-based beam-forming using CRS
	1D	46	MU-MIMO using CRS
	1	55	Flexible allocations
	2A	64	Open-loop spatial multiplexing using CRS
	2B	64	Dual-layer transmission using DM-RS (TM8)
	2C	66	Multi-layer transmission using DM-RS (TM9)
	2D	68	Multi-layer transmission using DM-RS (TM10)
	2	67	Closed-loop spatial multiplexing using CRS
	6-1A, 6-1B	46, 36	Downlink scheduling grants for eMTC devices (see Chapter 20)
Special	3, 3A	45	Power control commands
	5		Sidelink operation (see Chapter 21)
7	6-2		Paging/direct indication for eMTC devices (see Chapter 20)

$\mathbf{DCI} \rightarrow \mathbf{PDCCH}$

- Radio Network
 Temporary Identifier
 (RNTI) is included in
 CRC calculation
 - Not explicitly transmitted
- RNTI varies with DCI format
- For unicast data transmission, devicespecific C-RNTI is

Cell-specific cyclic shift

Control Channel Elements (CCE)

Structure to map PDCCH to REs

State University of New York

- > Number of CCEs for each PDCCH may vary, not signaled
- > Device has to blindly determine the number of CCEs
- > Aggregation reduces overhead of blind decoding

Enhanced Physical Downlink Control

- > to enable frequency-domain scheduling and interference coordination also for control signaling
- ➢ to enable DM-RS-based reception for the control signaling

One EPDCCH in the data region

Blind Decoding of PDCCH

- Search space
 - Common
 - Device specific

Resource Block Mapping

UNIVERSITYATALBANY State University of New York

Downlink

Downlink Resource Allocation information

12	UNIVERSITYAT ALBANY
N/2)	State University of New York

						DCLE	ormat				
								1			
F	ield	1	1A	1B	1C	1D	2	2A	2B	2C	20
Resource	Carrier indicator	•	•	•		•	•	•	•	•	·
information	Resource block	0/1	2	2	2'	2	0/1	0/1	0/1	0/1	0/
	assignment type										
HARQ process n	umber I	·	•	·		•	· ·	•	·	•	·
1st transport	MCS	·	•	•	•	•	·	•	· ·	•	·
block	RV	· ·	•	•		•	•	•	•	•	·
	NDI	·	•	•		•	·	· ·	· ·	•	·
2nd transport	MCS						•	·	·	•	·
block	RV						•	•	·	•	•
	NDI						•	•	·	•	·
Multi-antenna	PMI			•							
information	confirmation										
	Precoding			·		•	· ·	·			
	information										
	Transport block						· ·	· ·			
	swap nag										
	Power offset					· ·					
	DM-RS scrambling								·		
	#Lavars/DM PS										١.
	scrambling/										⁻
	antenna ports										
PDSCH mapping	and quasi-										.
colocation indica	tor										
Downlink assignment index		•	•	•		•	•	•	•	•	۱.
PUCCH power control		•	•	•		•	•	•	•	•	۰
SRS request ^a			F						Т	Т	Т
ACK/NAK offset (EPDCCH only)			•	•		•	•	•	•	•	۱.
Flag for 0/1A dif	ferentiation		•								
Padding (only if needed)		(•)	(•)	(•)		(•)	(•)	(•)	(•)	(•)	0
Identity		•	•	•	•	•	•	•	•	•	

DCI Format 1 (DL Scheduling)

Bits	Field
1	Resource Allocation Header : Resource Allocation Type 0 or <u>1</u>
$\left[\frac{N_{RB}^{DL}}{P}\right]$	 [log₂(P)] bits : indicate Selected Resource Block Subset 1 bits : indicate a shift of resource allocation span [N^{DL}_{RB}] - [log₂(P)] - 1 bits : Resource Assignment
5	MCS
3 or 4	HARQ Process : 3 for FDD, 4 for TDD
1	New Data Indicator
2	Redundancy Version
2	UL Power Control (PUCCH)
2	Downlink Assignment Index : TDD

Uplink Scheduling Grants

Table 6.7 DCI Formats for Uplink Scheduling Grants					
	DCI Format				
Fie	0	4			
Resource information	Carrier indicator	•	•		
	Resource allocation type	•	•		
	Resource block assignment	0/(1)	0/1		
1st transport block	MCS/RV	•	•		
	NDI	•	•		
2nd transport block	MCS/RV		•		
	NDI		•		
DM-RS phase rotation and O	•	•			
Precoding information		•			
CSI request		•	•		
SRS request		•	•		
Uplink index/DAI (TDD only	•	•			
PUSCH power control	•	•			
Flag for 0/1A differentiation	•				
Padding (only if needed)	(•)	(•)			
Identity	•	·			

LTE Resource Grid

- > Online Generator
 - <u>http://niviuk.free.fr/lte_resource_grid.html</u>

Uplink Transmission

55

Uplink Reference Signal

- > Uplink Demodulation RS (DM-RS)
 - Channel estimation for coherent detection
 - Uses ZC sequence and Orthogonal Cover Codes (OCC)

> Uplink Sounding RS (SRS)

- Channel estimation for uplink channel-dependent scheduling and link adaptation
- Estimate channel state at different frequencies
- Periodic (2-160ms) or Aperiodic
- Frequency-hopping/non-frequency Hopping

