# **Modern Wireless Networks**



# **Wireless Channel**

# IECE 574– Spring 2021 Prof. Dola Saha

State University of New York

## **Why Channel Modeling?**

- Performance of a radio system is determined by the radio channel
- > The channel models basis for
  - System design
  - Algorithm design
  - Antenna design
- Trend towards more interactive system
  - MIMO, UWB



Without reliable channel models, it is hard to design radio systems that work well in *real* environments.

### **The Radio Channel**

- > More complex than just a loss
- > Some examples:
  - Behavior in time/place?
  - Behavior in frequency?
  - Directional properties?
  - Bandwidth dependency?
  - Behavior in delay?



### **Speed, Wavelength and Frequency**

Light speed = Wavelength x Frequency

 $= 3 \times 10^8 \text{ m/s} = 300,000 \text{ km/s}$ 

| System            | Frequency            | Wavelength         |
|-------------------|----------------------|--------------------|
| AC current        | 60 Hz                | 5,000 km           |
| FM radio          | 100 MHz              | 3 m                |
| Cellular          | 800 MHz              | 37.5 cm            |
| Ka band satellite | 20 GHz               | 15 mm              |
| Ultraviolet light | $10^{15}\mathrm{Hz}$ | 10 <sup>-7</sup> m |





### **Propagation Mechanisms**

#### > Reflection

- Propagation wave impinges on an object which is large as compared to wavelength
  - e.g., the surface of the Earth, buildings, walls, etc.

#### Diffraction

- Radio path between transmitter and receiver obstructed by surface with sharp irregular edges
- Waves bend around the obstacle, even when LOS (line of sight) does not exist

#### Scattering

- Objects smaller than the wavelength of the propagation wave
  - e.g. foliage, street signs, lamp posts



#### **Radio Propagation Effects**



#### **Reflection and Transmission**





### **Reflection and Transmission**

- TE TM > Snell's Law • Reflection Angle ( $\theta_r = \theta_e$ ) • Transmission Angle  $\left(\frac{\sin \theta_t}{\sin \theta_e} = \frac{\sqrt{\epsilon_1}}{\sqrt{\epsilon_2}}\right)$  $\Theta_{e} \Theta_{r}$  $\Theta_{e} \Theta_{r}$ ➤ TE and TM waves 2 Traversal Magnetic (TM) magnetic field component is parallel to the boundary between the two dielectrics
  - Traversal Electric (TE)
    - electric field component is parallel to the boundary between the two dielectrics



### **Reflection Coefficient for Polarization**

$$\rho_{\rm TM} = \frac{\sqrt{\epsilon_2} \cos \Theta_{\rm e} - \sqrt{\epsilon_1} \cos(\Theta_{\rm t})}{\sqrt{\epsilon_2} \cos \Theta_{\rm e} + \sqrt{\epsilon_1} \cos(\Theta_{\rm t})}$$

- Has both Amplitude & Phase
- > reflection coefficient becomes -1 (magnitude 1, phase shift of  $180^{\circ}$ ) at grazing incidence ( $\Theta e \rightarrow 90^{\circ}$ )



Case for dielectric halfspace: ground reflections and reflections by terrain features, like mountains

State University of New York

### **Transmission through Dielectric Layer**

- Results in Attenuation and Phase Shift
- The reflection and transmission coefficients can be determined by summation of the partial waves
- > Total Transmission Coefficient  $T = \frac{T_1 T_2 e^{-j\alpha}}{1 + \rho_1 \rho_2 e^{-2j\alpha}}$ > Total Reflection Coefficient  $\rho = \frac{\rho_1 + \rho_2 e^{-j2\alpha}}{1 + \rho_1 \rho_2 e^{-2j\alpha}}$
- Electrical length of the dielectric

 $\alpha = \frac{2\pi}{\lambda} \sqrt{\varepsilon_{r,2}} d_{\text{layer}} \cos (\Theta_{\text{t}})$ 

 $T_2$ 

d

 $T_1$ 

## Diffraction

 Only in the limit of very small wavelength (large frequency) does geometrical optics become exact



- Behavior of homogeneous wave by a semiinfinite screen
- Single or multiple edges
- Makes it possible to go behind corners
- Less pronounced when the wavelength is small compared to objects



### Scattering



for Gaussian surface distribution angle of incidence  

$$\rho_{\text{rough}} = \rho_{\text{smooth}} \exp\left[-2\left(k_0 \sigma_h \sin\psi\right)^2\right]$$

standard deviation of height



### **Narrowband System (Noise free)**



#### > Model the channel attenuation & phase



#### **Wireless Channel**





### **Small Scale Fading**



### Shadowing

- Trees and buildings may be located between the transmitter and the receiver and cause degradation in received signal strength
- Shadowing is a random pro

$$P_{r} = P_{t}P_{o}\chi\left(\frac{d_{o}}{d}\right)^{\alpha}$$
$$\chi = 10^{x/10}, \text{ where } x \sim N(0, \sigma_{s}^{2})$$







State University of New York



### Doppler

#### Doppler Effect:

- When a wave source and a receiver are moving towards each other, the frequency of the received signal will not be the same as the source.
- When they are moving toward each other, the frequency of the received signal is higher than the source.
- When they are opposing each other, the frequency decreases.
- Thus, the frequency of the received signal is

$$f_R = f_C - f_D$$

where  $f_C$  is the frequency of source carrier,  $f_D$  is the Doppler frequency.

**Doppler Shift** in frequency:

$$f_D = \frac{v}{\lambda} \cos \theta$$

where v is the moving speed,  $\lambda$  is the wavelength of carrier.



#### **Two Ray Ground Reflection**



 $\alpha = Pathloss exponent$   $d_0 = 1m$  $P_0 = Received power at d_0$ 



### **Delay Spread**

- When a signal propagates from a transmitter to a receiver, signal suffers one or more reflections.
- > This forces signal to follow different paths.
- Each path has different path length, so the time of arrival for each path is different.
- This effect which spreads out the signal is called "Delay Spread".



### **Channel Impulse Response**

> The channel is time varying, so the channel impulse response is also a function of time and can be quite different at time  $t + \Delta t$  than it was at time t





#### **Multipath Channel Effects**



### **Delay Spread**





#### Delay

### Wideband vs Narrowband

The *maximum* excess delay  $\tau_{\rm max}$  is defined as the difference between minimum and maximum delay.

Delay dispersion results in *frequency* selective channel.

State University of New York





### **Effect of dispersion (ISI)**





### **Intersymbol Interference (ISI)**



#### **ISI: impediment to increase data rate**

#### Need for higher data rate urges to transmit at higher symbol Higher ISI





### **Coherence Bandwidth**

- Statistical measure of the range of frequencies over which the channel can be considered "flat"
  - a channel which passes all spectral components with approximately equal gain and linear phase
  - Two frequencies that are larger than the coherence bandwidth fade independently
  - Represents correlation between two fading signal envelopes at frequencies *f*<sub>1</sub> and *f*<sub>2</sub>.

$$(\mathrm{B_C}) ext{ in Hertz} = rac{1}{2\pi imes ( ext{Delay Spread})}$$



#### **Coherence Bandwidth**

The coherence bandwidth is defined relative to the Fourier transform of  $A_c(\tau)$ , given by  $A_C(\Delta f) = \mathcal{F}[A_c(\tau)]$ . Note that  $A_C(\Delta f) = A_C(\Delta f, \Delta t = 0)$ .

 $A_C(f_1, f_2; \Delta t) = \mathbb{E}[C^*(f_1; t)C(f_2; t + \Delta t)].$ 

By the Fourier transform relationship, the bandwidth over which  $A_C(\Delta f)$  is nonzero is roughly  $B_c \approx 1/\sigma T_m$  or  $B_c \approx 1/\sigma_{T_m}$  (can also add constants to these denominators).

 $B_c$  defines the coherance bandwidth of the channel, i.e. the bandwidth over which fading is correlated.

The function  $A_C(\Delta f; \Delta t)$  can be measured in practice by transmitting a pair of sinusoids through the channel that are separated in frequency by  $\Delta f$  and calculating their cross correlation at the receiver for the time separation  $\Delta t$ .



#### **Coherence Time**

- > Doppler effect can be characterized by taking the Fourier transform of  $A_{C}(\Delta f; \Delta t)$  relative to  $\Delta t$
- > In order the characterize Doppler at a single frequency, we set  $\Delta f$  to zero

Doppler Power Spectrum 
$$S_C(\rho) = \int_{-\infty}^{\infty} A_C(\Delta t) e^{-j2\pi\rho\Delta t} d\Delta t$$

- >  $A_C(\Delta t = T) = 0$  indicates that observations of the channel impulse response at times separated by T are uncorrelated and therefore independent
- > The channel coherence time  $T_c$  is the range of values over which  $A_C (\Delta t)$  is approximately nonzero
- > The maximum value of  $\rho$  for which  $|S_c(\rho)| > 0$  is called the channel Doppler spread, which is denoted by  $B_d$



Andrea Goldsmith book Sections 3.3.2 and 3.3.3

### **Relationships**





#### **3GPP Channel Model**

