Modern Wireless Networks

Wireless Fundamentals

IECE 574– Spring 2021 Prof. Dola Saha

State University of New York

What's the Internet: nuts and bolts

 PC

 iserver

 vireless

 aptop

 smartphone

 \geq

 \succ

wireless links wired links

- Packet switches: forward packets (chunks of data)
- routers and switches
- Millions of connected computing devices:
- hosts = end systems
- running network apps

State University of New York

- Communication links
- Fiber, copper, radio, satellite
- Transmission rate: bandwidth
 NIVERSITYATALBANY

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
 - end-end delay = 2L/R (assuming zero propagation delay)
 more on delay shortly ...

UNIVERSITY^{AT}**ALBANY**

State University of New York

one-hop numerical example:
L = 7.5 Mbits
R = 1.5 Mbps
one-hop transmission delay = 5 sec

Packet Switching: queueing delay, loss

queuing and loss:

- If arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Internet structure: network of networks

... and regional networks may arise to connect access nets to ISPS

Internet Protocol Stack (RFC 1122, 1989)

- > application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
- Ethernet, 802.11 (WiFi)
- physical: bits "on the wire" / "over the air"

application
transport
network
link
physical

Why layering?

> dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- > modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- > layering considered harmful?

Encapsulation

Four sources of packet delay

$d_{\rm proc}$: nodal processing

- check bit errors
- determine output link
- typically < msec
 UNIVERSITY AT ALBANY
 State University of New York

d_{queue} : queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Four Sources of Packet Delay

d_{trans} : transmission delay:

- *L*: packet length (bits)
- *R*: link *bandwidth* (*bps*)

•
$$d_{trans} = L/R$$

 d_{trans} and d_{prop}
very different

d_{prop} : propagation delay:

d: length of physical link

 $d_{\rm prop} = d/s$

 s: propagation speed in medium (~3x10⁸ m/sec)

Synthesis: a day in the life of a web request

- > journey down protocol stack complete!
 - application, transport, network, link
- > putting-it-all-together: synthesis!
 - *goal:* identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

Packet loss

- > queue (aka buffer) preceding link in buffer has finite capacity
- > packet arriving to full queue dropped (aka lost)
- Iost packet may be retransmitted by previous node, by source end system, or not at all

- *throughput:* rate (bits/time unit) at which bits transferred between sender/receiver
 - *instantaneous:* rate at given point in time
 - *average:* rate over longer period of time

Throughput: Internet scenario

- per-connection endend throughput: min(R_c,R_s,R/10)
- in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

Performance

- Latency = Propagation + processing + transmit + queue
- Propagation = distance/speed of light
- > Transmit = size/bandwidth
- Processing = depends on the node (hardware + software)
- > RTT => Round Trip Time

- One bit transmission => propagation is important
- Large bytes transmission => bandwidth is important

A day in the life: scenario

A day in the life... connecting to the Internet

> connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP

- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life... connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
 - encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
 - DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending *HTTP* request, need IP address of www.google.com: *DNS*
 - DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
 - ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
 - client now knows MAC address of first hop router, so can now send frame containing DNS query

 IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router

- IP datagram forwarded from campus network into Comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server
- demuxed to DNS server
- DNS server replies to client with IP address of www.google.com

A day in the life...TCP connection carrying HTTP

- to send HTTP request, client first opens TCP socket to web server
- TCP SYN segment (step 1 in 3way handshake) inter-domain routed to web server
- web server responds with TCP SYNACK (step 2 in 3-way handshake)
- TCP connection established!

A day in the life... HTTP request/reply

- HTTP request sent into TCP socket
- IP datagram containing HTTP request routed to www.google.com
- web server responds with HTTP reply (containing web page)
- IP datagram containing HTTP reply routed back to client

Wireless Digital Communication System

Antenna

> The effective (or equivalent) isotropic radiated power (EIRP) of a transmitter $EIRP = P_tG_t$

> Antenna Gain
$$G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi f^2 A_e}{c^2}$$

- A_e = Effective Area (area where the signal energy can be received)
- $f = \text{carrier frequency}, c = \text{speed of light}, \lambda = \text{wavelength}$

Free Space Propagation

- Free space propagation assumes a signal propagates in a vacuum with no obstacles
- > Transmitter generates P_t , antenna magnifies with gain G_t
- Assume that transmitted signal travels in all directions (isotropic antenna)
- > Power density at receive antenna is $\frac{P_t G_t}{4\pi R^2}$
- > If receiver has an effective aperture A_e
- > Received power is $P_r = \frac{P_t G_t A_e}{4\pi R^2}$

Friis transmission formula

Free Space Pathloss

Free Space Pathloss $\frac{P_t}{P_r} = \frac{(4\pi d)^2}{\lambda^2} = \frac{(4\pi f d)^2}{c^2}$ In dB

$$egin{aligned} L_{dB} &= 10 \; \log rac{P_t}{P_r} = 20 \; \log \left(rac{4\pi d}{\lambda}
ight) = &-20 \; \log \left(\lambda
ight) + 20 \; \log \left(d
ight) + 21.98 \; \mathrm{dB} \ &= 20 \; \log \left(rac{4\pi f d}{\mathrm{c}}
ight) = 20 \; \log \left(f
ight) + 20 \; \log \left(d
ight) - 147.56 \; \mathrm{dB} \end{aligned}$$

as the frequency increases, the free space loss also increases
Accounting for gain of antennas:

$$rac{P_t}{P_r} = rac{{{{\left({4\pi }
ight)}^2}{\left({d
ight)}^2}}}{{{G_r}{G_t}{\lambda ^2}}} = rac{{{{\left({\lambda d}
ight)}^2}}}{{{A_r}{A_t}}} = rac{{{{\left({cd}
ight)}^2}}}{{{f^2}\;{A_r}{A_t}}}$$

 $In dB \qquad L_{dB} = 20 \log (\lambda) + 20 \log (d) - 10 \log (A_t A_r) \\ = -20 \log (f) + 20 \log (d) - 10 \log (A_t A_r) + 169.54 dB$

with antenna gain, the change in loss is measured by $-20\log(f)$ UNIVERSITY AT ALBANY State University of New York

Pathloss in Practical Systems

$$rac{P_t}{P_r} = igg(rac{4\pi}{\lambda}igg)^2 d^n = igg(rac{4\pi f}{c}igg)^2 d^n$$

$$egin{split} L_{dB} &= 10\,\lograc{P_t}{P_r} = 10\,\log\left(\left(rac{4\pi}{\lambda}
ight)^2 d^n
ight) = -20\,\log\left(\lambda
ight) + 10n\,\log\left(d
ight) + 21.98\,\mathrm{dB} \ &= 10\,\log\left(\left(rac{4\pi f}{\mathrm{c}}
ight)^2 d^n
ight) = 20\,\log\left(f
ight) + 10n\,\log\left(d
ight) - 147.56\,\mathrm{dB} \end{split}$$

Environment	Path Loss Exponent, n
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed cellular radio	3 to 5
In building line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

Channel

Signal to Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that's present at a particular point in the transmission
- > Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)

$$SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$

- > A high SNR means a high-quality signal
- SNR sets upper bound on achievable data rate

Maximum Achievable Channel Capacity

Shannon's Capacity

$$C = B \log_2 \left(1 + \mathrm{SNR} \right)$$

- *C* is the capacity of the channel in bits per second
- *B* is the bandwidth of the channel in Hertz

Channel Effects

Transmitted and Received QPSK Signal

Signal to Noise Ratio

State University of New York

> How to calculate SNR from a received signal trace?

bit error rate (BER) = number of bits in error divided by the total number of bits over a long interval UNIVERSITYATALBANY

Modulation

Amplitude Shift Keying $s\left(t
ight) = \left\{egin{array}{c} A\cos\left(2\pi f_{c}t
ight) & ext{binary 1} \ 0 & ext{binary 0} \end{array}
ight.$ ASK Frequency Shift Keying BFSK $\mathrm{B}s\left(t
ight) = \left\{egin{array}{c} A\cos\left(2\pi f_{1}t
ight) & \mathrm{binary}\,1\ A\cos\left(2\pi f_{2}t
ight) & \mathrm{binarv}\,0 \end{array}
ight.$ > Phase Shift Keying $s(t) = \begin{cases} A\cos\left(2\pi f_c t\right) \\ A\cos\left(2\pi f_c t + \pi\right) \end{cases} = \begin{cases} A\cos\left(2\pi f_c t\right) & \text{binary 1} \\ A\cos\left(2\pi f_c t\right) & \text{binary 0} \end{cases}$ BPSK (a) ASK (b) BFSK (c) BPSK UNIVERSITY AT ALBANY State University of New York

Higher Order PSK

.

$${f QPSK} \qquad s\left(t
ight) = egin{cases} A\cos\left(2\pi f_{c}t+rac{\pi}{4}
ight) & 11\ A\cos\left(2\pi f_{c}t+rac{3\pi}{4}
ight) & 01\ A\cos\left(2\pi f_{c}t-rac{3\pi}{4}
ight) & 00\ A\cos\left(2\pi f_{c}t-rac{\pi}{4}
ight) & 10 \end{cases}$$

Quadrature Amplitude Modulation

- Commonly used in Wireless Standards
- Combination of ASK & PSK

Energy Normalization

Goal: Average Power of Modulated Signal remains unity

Demodulation

- Compute Euclidean distance between received value and all possible transmitted values
- > Map to the value, which is minimum
- > Decision Boundary
 - Half the distance between two nearest signal constellations

Error Vector Magnitude (EVM)

38

Gray Coding

Gray-coding assigns bits to symbols so that small symbol errors cause few bit errors:

When	1101	is sent:
------	------	----------

Point	Decodes as	Bit errors
Α	1101	0
В	110 <u>0</u>	1
С	1 <u>0</u> 01	1
D	11 <u>1</u> 1	1
E	<u>0</u> 101	1

Channel Coding

- > Wireless channel introduces errors in burst
- Coping with transmission error
- > Error Detection Codes
 - Detect error and retransmit
 - Example: Cyclic Redundancy Check (CRC)
- Error Correcting Codes (Forward Error Correction)
 - transmit enough redundant data to allow receiver to recover from errors
 - No sender retransmission required.
 - Examples: Block codes, Cyclic codes, Reed-Solomon codes, Convolutional codes, Turbo codes, etc.
 UNIVERSITYATALBANY

Cyclic Redundancy Check (CRC)

- powerful error-detection coding
- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), G
- > goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- > widely used in practice (Ethernet, 802.11 WiFi, ATM)

Modulo 2 Arithmetic

- CRC Calculations are done in modulo-2 arithmetic.
 - Without carries and borrows in addition and subtraction
- > Addition & Subtraction are identical and equivalent to bitwise XOR.
- Multiplication and division are same as in base-2 arithmetic.

CRC Example

- ➤ want:
 - $D.2^r XOR R = nG$
- > equivalently:
 - $D.2^r = nG XOR R$
- > equivalently:
 - if we divide D.2^r by G, we want remainder R to satisfy:

$$R = remainder \frac{D.2^r}{G}$$

[0	5					1	0	1	0	1	1
1	0	0	1	1	0	1	1	1	0	0	0	0
				1	0	0	1		\backslash			
						1	0	1				
						0	0	0			D	
						1	0	1	0			
						1	0	0	1			
								1	1	0		
								0	0	0		
								1	1	0	0	
								1	0	0	1	
									1	0	1	0
									1	0	0	1
										0	1	1
Tr	ุลท	1C1	ni	tte	հ	hi	ite				R	
	uI	101	111	u	Ju	01						
1	0	1	1	1	0	0	0	0	0	1	1	

43

Homework

Consider the 5-bit generator, G=10011. Suppose D has a value of 1010101010. What is the value of R?

Cyclic Redundancy Check (CRC)

- Six generator polynomials that have become international standards are:
 - CRC-8 = $x^8 + x^2 + x + 1$
 - CRC-10 = $x^{10}+x^9+x^5+x^4+x+1$
 - CRC-12 = $x^{12}+x^{11}+x^3+x^2+x+1$
 - CRC-16 = $x^{16} + x^{15} + x^2 + 1$
 - CRC-CCITT = $x^{16}+x^{12}+x^{5}+1$
 - CRC-32 = $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$

Convolution Codes

- Most widely used channel code
- encoded bits depend not only on the current input data bits but also on past input bits
- Decoding is mostly performed by the Viterbi Algorithm
- Constraint length K for a convolution code is defined as K=M+1
 - M is the maximum number of stages in any shift register

Convolution Codes

- Shift registers store the state information of the convolutional encoder
- Constraint length relates the number of bits on which the output depends
- > The code rate r is defined as r = k/n
 - k is the number of parallel information bits
 - n is the number of parallel output encoded bits at one time interval
- Initial values of shift registers is 0

Convolution Encoder (n=2, k=1, r=1/2)

State University of New York

State Diagram

- Encoder changes state
- > Each State (D_1D_2)
- > Output (y_1y_2)
- > Input (x_1)

Trellis

> The Viterbi decoder finds a maximum likelihood path through the Trellis

Homework

Use the encoder to determine output produced by input sequence of 1011

Interleaving

- Protect transmitted data from *burst errors*
 - no redundancy
 - does not have error-correcting capability
 - error-correcting codes are capable of correcting individual errors, but not a burst error

Turbo Code: Encoder

x: Information

y_i: Redundancy Information

Turbo Code: Decoder

x': Decoded Information

 x^{2}

Automatic Repeat Request (ARQ)

Stop and Wait

Go Back N

