Cyber-Physical Systems

1

Feedback Control

IECE 553/453– Fall 2021

Prof. Dola Saha

Control System in Action

Honeywell Bolling Honeywell Bolling Honeywell Bolling Honeywell

Honeywell Thermostat, 1953

Chrysler cruise control, 1958 Feedback Systems: An Introduction for Scientists and Engineers²

Closed Loop Control

Open Loop Control

Control Action is independent of the output of the system

Open Loop Control

- state estimator eliminated
 - not well suited for a complex plant
- > assumes disturbing forces have little effect on the plant
- less expensive than closed-loop control
 - example: electric toaster

Example Problem: Bike in straight Line

- >Steer the bike in a straight line blindfolded
- >Open loop \rightarrow no sensor feedback
- >What if you hit a rock?
- >What if the handle bars aren't perpendicular to the wheels?

Control Systems Strategy

- > Strategy
 - plant is a system that is intended to be controlled
 - collect information concerning the plant data acquisition system (DAS)
 - compare with desired performance
 - generate outputs to bring plant closer to desired performance

You can't control what you can't measure

Control Systems

- Microcomputers are widely employed in control systems:
 - automotive ABS, ignition and fuel systems
 - household appliances
 - smart things
 - industrial robots
 - pacemakers

Why are we interested in Feedback Systems in CPS course?
NIVERSITYATALBANY

Control Systems – Closed loop

- Closed-loop control
 - feedback loop implementation
 - $_{\odot}\,$ suitable for complex plant
 - sensors and state estimator produce representation/estimation of state variables
 - these values are compared to desired values
 - control software generates control commands based upon the differences between estimated and desired values

Closed Loop Control

Control action depends on the output of the system

Example Problem: Bike in straight Line

- > If you can see the pavement \rightarrow Closed Loop Approach
- Control based on error: PID
- Proportional : Change handle angle proportional to the current error
- Derivative : Large handle corrections when error is changing slowly, and small handle corrections when error is changing quickly
- > Integral : Handle corrections based on the cumulative error

Problem: Set Motor Velocity

> Open Loop Controller

- Use trial and error to create relationship between velocity and voltage
- Problems
 - Supply voltage change
 - Bumps in carpet
 - Motor Transients

Problem: Set Motor Velocity

- Closed Loop Controller
 - Feedback is used so that the actual velocity equals the desired velocity
 - Can use an optical encoder to measure actual velocity

Step Response with No Controller

- > Naive velocity to volts
- Model motor with several differential equations
- Slow rise time
- Stead-state offset

Step Response with Proportional Controller

Step Response with PD Controller

State University of New York

16

Step Response with PI Controller

Step Response with PID Controller

Control Systems – Performance

- > Performance metrics
 - steady-state controller error
 - an average value of the difference between desired and actual performance
 - transient response
 - $_{\odot}\,$ how quickly the system responds to change
 - stability
 - system output changes smoothly without oscillation or unlimited excursions

General Approach to PID

$$U(t) = K_{p}E(t) + \int_{0}^{t} K_{i}E(\tau)d\tau + K_{d} \frac{dE(t)}{dt}$$

> Proportional $U_{p} = K_{p}E$
> Integral $U_{i} = U_{i-1} + K_{i} E \Delta t$
> Derivative $U_{d} = K_{d}(E(n)-E(n-1))/\Delta t$
> PID $U = U_{p} + U_{i} + U_{d}$

PID – Performance Measure

> Accuracy

- Magnitude of the Error = Desired-Actual
- Stability
 - No oscillations
- > Overshoot (underdamped, overdamped)
 - Ringing, slow
- > Response Time to new steady state after
 - Change in desired setpoint
 - Change in load

Controller	Response	Overshoot	Error
Open-Loop	Smallest	Highest	Large
Proportional	Small	Large	Small
Integral	Decreases	Increases	Zero
Derivative	Increases	Decreases	Small change

Parameter Tuning

- > Manual Tuning
- > Ziegler–Nichols' Tuning
 - Time Domain Method
 - Frequency Domain Method
- > Relay Feedback
- > Integrator Windup

PID Controller in Software

- > Wait for clock interrupt
- Read input from sensor
- Compute control signal
- Send output to the actuator
- > Update controller variables
- > Repeat

PID Controller Pseudocode

```
% Precompute controller coefficients
bi=ki*h
ad=Tf/(Tf+h)
bd=kd/(Tf+h)
br=h/Tt
% Control algorithm - main loop
while (running) {
  r=adin(ch1)
  y=adin(ch2)
  P=kp*(b*r-y)
  D=ad*D-bd*(y-yold)
  v=P+T+D
  u=sat(v,ulow,uhigh)
  daout(ch1)
  I=I+bi*(r-y)+br*(u-v)
  yold=y
  sleep(h)
```


% read setpoint from ch1 % read process variable from ch2 % compute proportional part % update derivative part % compute temporary output % simulate actuator saturation % set analog output ch1 % update integral % update old process output % wait until next update interval

Proportional Controller to Helicopter Problem

$$\begin{aligned} \dot{\theta}_{y}(t) &= \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau \\ &= \dot{\theta}_{y}(0) + \frac{K}{I_{yy}} \int_{0}^{t} (\psi(\tau) - \dot{\theta}_{y}(\tau)) d\tau \end{aligned}$$

Controller Summary

- Controller only as good as its sensor
- > Observe everything "What was it thinking?"
- > Change one parameter at a time
- > Choose stability over responsiveness

