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Closed Loop Control
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Open Loop Control

> Control Action 1s independent of the output of the

system
Desired state Noise
variables + X*(t) Control Disturbing forces
[ Driving forces l
commands
Real state
Controller » Actuators > Plant varables
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UNIVERSITYATALBANY
State University of New York



Open Loop Control

> state estimator eliminated

= not well suited for a complex plant

> assumes disturbing forces have little effect on the
plant

> less expensive than closed-loop control

= example: electric toaster
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Example Problem: Bike in straight Line

»>Steer the bike 1n a straight line blindfolded
»Open loop =2 no sensor feedback
»>What 1f you hit a rock?

»>What if the handle bars aren’t perpendicular to
the wheels?
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Control Systems Strategy

> Strategy
= plant 1s a system that is intended to be controlled

= collect information concerning the plant — data acquisition
system (DAS)

= compare with desired performance
= generate outputs to bring plant closer to desired performance

> You can’t control what you can’t measure
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Control Systems

» Microcomputers are widely employed in control
systems:
= automotive ABS, ignition and fuel systems
* household appliances
= smart things

* industrial robots
" pacemakers

> Why are we interested in Feedback Systems in
CPS course?
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Control Systems — Closed loop

» Closed-loop control
= feedback loop implementation
o suitable for complex plant

= sensors and state estimator produce representation/estimation
of state variables

= these values are compared to desired values

= control software generates control commands based upon the
differences between estimated and desired values
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Closed Loop Control

> Control action depends on the output of the system
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variables - X*(t) Control Disturbing forces
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Real state variables
Controller »  Actuators > Plant >
. ugy) D(t) X0
“ Sensors ’

UNIVERSITYATALBANY 10
State University of New York



Example Problem: Bike in straight Line

> If you can see the pavement =2 Closed Loop Approach
» Control based on error: PID

> Proportional : Change handle angle proportional to the current
error

> Derivative : Large handle corrections when error 1s changing

slowly, and small handle corrections when error 1s changing
quickly

> Integral : Handle corrections based on the cumulative error
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Problem: Set Motor Velocity

> Open Loop Controller

= Use trial and error to create relationship
between velocity and voltage

= Problems
o Supply voltage change
o Bumps in carpet

o Motor Transients

Desired Velocity
Velocity To Volts
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Problem: Set Motor Velocity

> Closed Loop Controller

= Feedback 1s used so that the actual
velocity equals the desired velocity

= Can use an optical encoder to measure
actual velocity

Desired
Velocity + err Adjusted

»
>

R Actual
Velocity
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Step Response with No Controller
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Step Response with Proportional Controller
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Step Response with PD Controller
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Step Response with PI Controller

Desired .
Velocity
(Vies) + err

X =V, +Kpet) - K, [ e(t) dt
> Integral term eliminates
accumulated error

(X)

> Increases overshoot
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Step Response with PID Controller

Desired Actual
Velocity —  Velocity
(Vges) Ad ]UStEd Volts (Vact)

X =
» Combined

benefits of PI
and PD
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Control Systems — Performance

> Performance metrics
= steady-state controller error

o an average value of the difference between desired and actual
performance

"= transient response
o how quickly the system responds to change
= stability
o system output changes smoothly — without oscillation or
unlimited excursions
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General Approach to PID

t
dE (¢
U(t)= K ,E(t)+ j K E(r)dr+K, ©)
dt

0
> Proportional U, =K,E
> Integral U=U_4+KEAt
> Derivative Ug=K4(E(n)-E(n-1))/ At
> PID U=U,+ U; + Uy
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PID — Performance Measure

> Accuracy
= Magnitude of the Error = Desired— Actual ] (\M
> Stability ,
i 7
= No oscillations _} tresponse

> Overshoot (underdamped, overdamped)

= Ringing, slow

> Response Time to new steady state after

= Change in desired setpoint

= Change in load
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Comparison

Open-Loop |Smallest Highest Large
Proportional |Small Large Small
Integral Decreases Increases /Zero
Derivative Increases Decreases Small change
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Parameter Tuning

> Manual Tuning

> Ziegler—Nichols’ Tuning
* Time Domain Method
* Frequency Domain Method

> Relay Feedback
> Integrator Windup
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PID Controller in Software

> Wait for clock interrupt

> Read input from sensor

> Compute control signal

> Send output to the actuator
> Update controller variables
> Repeat
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PID Controller Pseudocode

% Precompute controller coefficients

bi=ki*h
ad=Tf/ (Tf+h)
bd=kd/ (Tf+h)
br=h/Tt

% Control algorithm - main loop

while (running) {
r=adin(chl)
y=adin(ch2)
P=kp* (b*r-y)
D=ad*D-bd* (y-yold)
v=P+I+D
u=sat(v,ulow,uhigh)
daout (chl)
I=I+bi*(r-y)+br*(u-v)
yold=y
sleep(h)

}
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read setpoint from chl

read process variable from ch2
compute proportional part
update derivative part

compute temporary output
simulate actuator saturation
set analog output chl

update integral

update old process output

wait until next update interval
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Proportional Controller to Helicopter Problem

Controller Helicopter
¥ < I\ y > 9\
/ ; e (0)
desired angular error signal \net torque
velocity e(t) = y(r) —Oy(7) T,(t) = Ke(t)

00) = 800+ [T



Controller Summary

> Controller only as good as its sensor
> Observe everything “What was 1t thinking?”
> Change one parameter at a time

> Choose stability over responsiveness
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