Cyber-Physical Systems

Composite Models

IECE 553/453– Fall 2021

Prof. Dola Saha

Side-by-Side Composition

Synchronous composition: the machines react simultaneously and instantaneously.

Cascade Composition

Synchronous composition: the machines react simultaneously and instantaneously, despite the apparent causal relationship!

Synchronous Composition

Consider a cascade composition as follows:

Reactions are Simultaneous and Instantaneous

Synchronous Dataflow (SDF)

- Specialized model for dataflow
- All actors consume input tokens, perform their computation and produce outputs in one atomic operation
- Flow of control is known (predictable at compile time)
- Statically scheduled domain
- Useful for synchronous signal processing systems
- Homogeneous SDF: one token is usually produced for every iteration

Multirate SDF Model

SDF Director

- The firing rates of the actors are not identical
- The Spectrum actor requires 256 tokens to fire, so one iteration of this model requires 256 firings of Sinewave, Channel, and SequencePlotter, and one firing of Spectrum.

Balance Equations

- > When A fires, it produces M tokens on its output port
- > When B fires, it consumes N tokens on its input port
- > M and N are non-negative integers
- > Suppose that A fires q_A times and B fires q_B times
- All tokens that A produces are consumed by B if and only if the following **balance equation** is satisfied

 $q_A M = q_B N$

The system remains in balance if and only if the balance equation is satisfied

Example

- ≻ Suppose M=2, N=3
- Possible Solution:
 - q_A=3, q_B=2
 - Example Schedule : {A, A, A, B, B} OR {A, B, A, A, B}
- > Another Possible Solution:
 - $q_A = 6, q_B = 4$
 - Example Schedule: {A,A,A,A,A,A,B,B,B,B}

Strategy for firing

- Streaming applications: arbitrarily large number of tokens
- Naive strategy: fire actor A an arbitrarily large number q_A times, and then fire actor B q_B times
 - Why naive?
- > Better strategy:
 - smallest positive q_A and q_B that satisfy the balance equation
- > Unbounded execution with bounded buffers

Solving the Balance Equation

- Every connection between actors results in a balance equation
- The model defines a system of equations, and the goal is to find the least positive integer solution

- > The least positive integer solution to these equations is
 - $q_A = q_B = 1$, and $q_C = 2$
- The schedule {A, B, C, C} can be repeated forever to get an unbounded execution with bounded buffers

Inconsistent SDF

- An SDF model that has a non-zero solution to the balance equations is said to be consistent.
- > If the only solution is zero, then it is inconsistent.
- An inconsistent model has no unbounded execution with bounded buffers.
 NIVERSITY AT ALBANY

Feedback Loop

- A feedback loop in SDF must include at least one instance of the SampleDelay actor
- Without this actor, the loop would deadlock
 - actors in the feedback loop would be unable to fire because they depend on each other for tokens.
- The initial tokens enable downstream actors to fire and break the circular dependencies that would otherwise result from a feedback loop

Example Feedback Loop

- > The least positive integer solution is
- qA = 2, qB = 3, so the model is consistent.
- With 4 initial tokens: consistent
- > With 3 initial tokens: deadlock

Multirate Dataflow Actors

> actors that produce and/or consume multiple tokens per firing on a port

Dynamic Dataflow (DDF)

- SDF cannot express conditional firing: an actor fires only if a token has a particular value
- DDF: Firing Rule is required to be satisfied for firing
- Number of tokens produced can vary
- Example DDF Actor: Select
- Similar to Go To in Imperative Programming

Example DDF (Conditional Firing)

When Bernoulli produces true, the output of the Ramp actor is multiplied by -1

Data Dependent Iteration

Conditional Firing Output

Unbounded Buffer Schedule

INIVERSITYATALBANY

State University of New York

The Bernoulli actor is capable of producing an arbitrarily long sequence of true-valued tokens, during which an arbitrarily long sequence of tokens may build up on input buffer for the *false* port of the BooleanSelect, thus potentially overflowing the buffer.

- It may not be possible to determine a schedule with bounded buffers
- Not always possible to ensure that the model will not deadlock
- Buck (1993) showed that bounded buffers and deadlock are undecidable for DDF models.
- > DDF models are not as readily analyzed.
- Structured dataflow & higher order actors are used

Structured Dataflow

- Higher order actor: combine multiple actors as components
- Example Case: 2 sub-models
 - true that contains a Scale actor with a parameter of -1, and
 - default that contains a Scale actor with a parameter of 1.
 - When the control input to the Case actor is true, the true refinement executes one iteration. For any other control input, the default refinement executes.

UNIVERSITYATALBANY

State University of New York

SDF Director

Actor Model Implementation

- > Multiple clocks
- > Multiple domains
- > Buffer: Queue
- > Message: Interprocess communication

