Cyber-Physical Systems

UNIVERSITY

Multitasking TALBANY,

IECE 553/453— Fall 2021
Prof. Dola Saha

UNVR TY TALBANY

Layers of Abstraction for Concurrency

Concurrent model of computation

dataflow, time triggered, synchronous, etc.

Multitasking

processes, threads, message passing

Processor

interrupts, pipelining, multicore, etc.

UNIVERSITYATALBANY
Stat

e University of New York

Definition and Uses

> Threads are sequential procedures that share memory.
> Uses of concurrency:

= Reacting to external events (interrupts)
= Exception handling (software interrupts)

= Creating the illusion of simultaneously running different programs
(multitasking)

= Exploiting parallelism in the hardware (e.g. multicore machines).

= Dealing with real-time constraints.

UNIVERSITYATALBANY
State University of New York

OS Management

> Resources are made available to multiple applications

> The processor 1s switched among multiple
applications so all will appear to be progressing

> The processor and I/0 devices can be used efficiently

UNIVERSITYATALBANY
State University of New York

Process — several definitions

> A program 1n execution
> An 1nstance of a program running on a computer

> The entity that can be assigned to and executed on
a processor

> A unit of activity characterized by the execution
of a sequence of instructions, a current state, and
an associated set of system resources

UNIVERSITYATALBANY
State University of New York

Process Elements

> Two essential elements of a process are:

Crograim Codc

m which may be shared with other processes that are executing the same
program

A SCU O data asSsocC1atcd wi al COdcC

> when the processor begins to execute the program
code, we refer to this executing entity as a process

UNIVERSITYATALBANY
State University of New York

Process Elements

> While the program 1s executing, this process can
be uniquely characterized by a number of
clements

Identifier

Program

State
counter

Memory Context Accounting
pointers data information

UNIVERSITYATALBANY
State University of New York

Processes & Resources

Py P,
/’ . Virtual
/’ ! Memory
_________________________ A L.
0 : Computer
» Y Resources
Mai
Processor I/O /O /O M am
emory

UNIVERSITYATALBANY
Stat

e University of New York

OS Control Structures

Process
> MemOl'y tables > Memory tables > i
. Process
= used to keep track of both main (real) Memory !
and secondary (virtual) memory. Devices > 1/O tables
= Some is reserved for use by the OS; Files
the remainder 1s available to Processes > File tables
processes.
= Processes are maintained on
secondary memory using some sort of
. . . Primary process table
virtual memory or simple swapping
. > Process 1
mechanism
Process 2
Process
> 1/0 tables T it
o used to manage I/0 devices and . " | Process
n
channels of the computer system. .
> Flle TableS Process n
UNIVERSITYATALBANY 5

State University of New York

Process Control Block Identifier

State

> Contains the process elements Priority

Program counter

> It 1s possible to interrupt a running

Memory pointers

process and later resume execution Context data
as 1f the interruption had not 1O statu
information
occurred
Accounting
> Created and managed by the information

operating system
> Key tool that allows support for
multiple processes

UNIVERSITYATALBANY
State University of New York

Process States

_

The behavior of an
individual process
by listing the
sequence of
instructions that
execute for that
process

~

)

-

UNIVERSITYATALBANY -

State University of New York

~

The behavior of the processor
can be characterized by
showing how the traces of the
various processes are
interleaved

4 N

Small program
that switches the

processor from
one process to
another

11

Process Execution

> Memory layout of
three processes

> Dispatcher program:
switches processor
from one process to
another

UNIVERSITYATALBANY
State University of New York

Address

0
100

5000

8000

12000

Main Memory

Dispatcher

Process A

Process B

Program Counter

8000 o

Process C

12

Traces of Processes

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A (b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

UNIVERSITYATALBANY

State University of New York

13

1 5000 27 12004
o 2 5001 28 12005
Combined Traces A
4 5003 29 100
5 5004 30 101
6 5005 31 102
, - e — Timeout 32 103
» Processor’s Point of 7 w08
. 9 102 35 5006
View 0103 %00
11 104 37 5008
12 105 38 5009
13 8000 39 5010
14 8001 40 5011
. 15 8002 e Timeout
> Blue shaded area 1s 1o 8003 I
________________ 1/O Request 42 101
. 17 100 43 102
Dispatcher program 0 A
19 102 45 104
20 103 46 105
21 104 47 12006
22 105 48 12007
23 12000 49 12008
24 12001 50 12009
25 12002 51 12010
26 12003 52 12011

———————————————————— Timeout

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;

UNIVERSITYAT AL BANY first and third columns count instruction cycles;

State University of New York second and fourth columns show address of instruction being executed

Two State Process Model

> Principal responsibility of OS 1s controlling the
execution of processes
* determining the interleaving pattern for execution and

= allocating resources to processes.
Dispatch

_— T

Enter -t Not \ Exit
Running Running >

\/

Pause
UNIVERSITYATALBANY 15
State University of New York

Two State Process Model

State Transition Diagram

Dispatch
Enter Not \ Exit
- Running Running >

\/

Queueing Diagram

Queue Pause
Enter Dispatch Exit
‘ - 1 Processor .
Pause

UNIVERSITYATALBANY 16
State University of New York

Reasons for Process Creation

New batch job

The OS 1s provided with a batch job control stream, usually
on tape or disk. When the OS 1is prepared to take on new
work, it will read the next sequence of job control
commands.

Interactive logon

A user at a terminal logs on to the system.

Created by OS to provide a service

The OS can create a process to perform a function on
behalf of a user program, without the user having to wait
(e.g., a process to control printing).

Spawned by existing process

For purposes of modularity or to exploit parallelism, a user
program can dictate the creation of a number of processes.

UNIVERSITYATALBANY

State University of New York

17

Process Creation

B e Rl

 When the * Is the e Is the new
OS creates a original, process
process at creating,
the explicit process
request of
another
process

UNIVERSITYATALBANY
State University of New York

Process Termination

> There must be a means for a process to
indicate i1ts completion

> A batch job should include a HALT instruction
or an explicit OS service call for termination

> For an interactive application, the action of the
user will indicate when the process 1s
completed (e.g. log off, quitting an
‘application

N RSITYATALBAN
b y of New York

19

Reasons

> Possible reasons:
= Normal Completion
* Time limit exceeded
* Memory unavailable

= Parent termination

UNIVERSITYATALBANY

State University of New York

Normal completion

Time limit exceeded

Memory unavailable
Bounds violation

Protection error

Arithmetic error

Time overrun

1/O failure

Invalid instruction

Privileged instruction
Data misuse

Operator or OS intervention

Parent termination

Parent request

The process executes an OS service call to indicate that it has completed
running.

The process has run longer than the specified total time limit. There are a
number of possibilities for the type of time that is measured. These include total
elapsed time ("wall clock time"), amount of time spent executing, and, in the
case of an interactive process, the amount of time since the user last provided
any input.

The process requires more memory than the system can provide.

The process tries to access a memory location that it is not allowed to access.

The process attempts to use a resource such as a file that it is not allowed to use,
or it tries to use it in an improper fashion, such as writing to a read-only file.

The process tries a prohibited computation, such as division by zero, or tries to
store numbers larger than the hardware can accommodate.

The process has waited longer than a specified maximum for a certain event to
occur.

An error occurs during input or output, such as inability to find a file, failure to
read or write after a specified maximum number of tries (when, for example, a
defective area is encountered on a tape), or invalid operation (such as reading
from the line printer).

The process attempts to execute a nonexistent instruction (often a result of
branching into a data area and attempting to execute the data).

The process attempts to use an instruction reserved for the operating system.
A piece of data is of the wrong type or is not initialized.

For some reason, the operator or the operating system has terminated the process
(e.g., if a deadlock exists).

When a parent terminates, the operating system may automatically terminate all
of the offspring of that parent.

A parent process typically has the authority to terminate any of its offspring.

Five State Process Model

Dispatch
Admit E———
New — Ready Running
A Timeout

Event
Occurs

(Blocked

UNIVERSITYATALBANY
Stat

e University of New York

Release
_>

Exit

21

Fork

Not enough memory

Return 5
(swapping system only)

Lo user

Preempt R
Swap out

Return Reschedule
process = Swap in

System call,
interrupt

Interrupt,
interrupt return

Swap out

ﬁ UNIVERG11 1 v ALDAIN T 22

State University of New York

Queuing Model

Ready Queue _M»
Admit Dispatch
' Ready Queue) Release > P Processor
Admit Dispatch A
—_— 3P| Processor b
Timeout —|
Timeout =<
Blocked Queue Event 1 Queue .
Event - Event Wait Event 1 - Event 1 Wait
Occurs Occurs
Event 2 Queue
Event 2 - Event 2 Wait
Occurs
[]
[]
[]
Event n Queue
Event n Event n Wait
-
Occurs

Single Blocked Queue Multiple Blocked Queue

UNIVERSITYATALBANY

State University of New York

Processes Characteristics

» Resource Ownership
= Process includes a virtual address space to hold the process image

> The OS performs a protection function to prevent unwanted interference
between processes with respect to resources

» Scheduling / Execution
= Follows an execution path that may be interleaved with other processes

> A process has an execution state (Running, Ready, etc.) and a dispatching
priority, and is the entity that is scheduled and dispatched by the OS

UNIVERSITYATALBANY 24
State University of New York

Multiple Process Handling

> Remote Procedure Call (RPC)
> MPI (Message Passing Interface)

UNIVERSITYATALBANY
State University of New York

Process & Thread

> The unit of dispatching 1s referred to as a
thread or lightweight process

> The unit of resource ownership 1s referred to as
a process or task

> Multithreading - The ability of an OS to

support multiple, concurrent paths of execution
within a single process

UNIVERSITYATALBANY 26
State University of New York

Single Threaded Approach

> A single thread of
execution per process,
in which the concept of
a thread 1s not 5 S 5 S

recognized, 1s referred on proces e proces
to as a single-threaded |~~~ T
approach
> Example: MS-DOS m m
one thréad pe proces : riltiple hreats por process

S = instruction trace

UNIVERSITYATALBANY 27
State Ur

University of New York

Multiple Threaded Approach

» Multiple Threads
per process

> One process
multiple threads mo— . ,
(Java Runtime) """"" ST
> Multiple processes
each with multiple ,
threads (UNIX, one hread o proces |
Windows, Solaris) JR—

UNIVERSITYATALBANY 28
State University of New York

Process Model

Single-Threaded
Process Model

Process User
Control Stack
Block
User Kernel
Address Stack
Space

UNIVERSITYATALBANY

State University of New York

Multithreaded
Process Model
_ Thread =~ _ Thread =~ _ Thread
: Thread : : Thread : : Thread
Il Control [1 !| Control |1 !| Control
{[_Block | || Block |! || Block
| [|
| [[
| [|
Process | 1| User | || User |l || User
Control | || Stack ! | Stack ! || Stack
Block : Lo P
[(-
User I	Kernel : I	Kernel : I	Kernel
Address	;	Stack : \| Stack : \| Stack	
Space	:	:	
I ———— a	I ———— a	E————	

29

~ Less time to Threads enhance
terminate a efficiency in
thread than a communication

Switching between
process between programs

two threads takes

less time than
switching between
\ processes

Takes less
time to create

a new thread
than a

process \//

g‘a UNIVERSITYATALBANY 30

State University of New York

User and Kernel level Threads

SRR S R SRR
N\ |/ \ |/

User
Threads User Space Threads User
Library Space p Library Space
Kernel Kernel Kernel
@

Space 5 5 5 Space Space

(a) Pure user-level (b) Pure kernel-level (c) Combined

UNIVERSITYATALBANY 31
Stat

e University of New York

Thread Creation

> Prototype:

= int pthread create(pthread t *tid, const pthread attr t *tattr,
void*(*start routine)(void *), void *arg);

o tid: an unsigned long integer that indicates a threads id

o tattr: attributes of the thread — usually NULL

o start routine: the name of the function the thread starts executing
o arg: the argument to be passed to the start routine — only one

after this function gets executed, a new thread has been created and is
executing the function indicated by start routine

UNIVERSITYATALBANY 32
State University of New York

Waiting for a Thread

> Prototype:
= int pthread join(thread t tid, void **status);
o tid: identification of the thread to wait for
o status: the exit status of the terminating thread — can be NULL

= the thread that calls this function blocks its own execution until the thread
indicated by fid terminates its execution

o finishes the function it started with or

o 1issues a pthread exit() command — more on this in a minute

UNIVERSITYATALBANY
State University of New York

33

Exiting a Thread

> pthreads exist in user space and are seen by the kernel as a
single process
= 1f one issues and exif() system call, all the threads are terminated by the OS

= 1f the main() function exits, all of the other threads are terminated
> To have a thread exit, use pthread exit()
> Prototype:

= void pthread exit(void *status);

o status: the exit status of the thread — passed to the status variable in the pthread join()
function of a thread waiting for this one

UNIVERSITYATALBANY

State University of New York

34

Create Thread

#include <pthread.h>
#include <stdio.h>
void *PrintHello (void * id) {

printf (“Hello from thread %d\n", id);

void main () {
pthread t threadO, threadl;
pthread create(&threadO, NULL,
pthread create(&threadl, NULL,

UNIVERSITYATALBANY

State University of New York

PrintHello,
PrintHello,

(void *)
(void *)

thread

pthread_create

pthread_create \

35

Create Thread and Join

#include <pthread.h>
#include <stdio.h>
void *PrintHello (void * id) {

printf (“Hello from thread %d\n", id);

void main () {
pthread t threadO, threadl;
pthread create(&threadO, NULL,
pthread create(&threadl, NULL,
pthread join(threadO, NULL);
pthread join(threadl, NULL);

UNIVERSITYATALBANY

State University of New York

PrintHello,
PrintHello,

(void *)
(void *)

thread

pthread_create

pthread_create \

36

O N oUW N =

ounter Example

/%

* Counters.cpp Created on: 29 Apr 2015

* Copyright (c) 2015 Derek Molloy (www.derekmolloy.ie)
* Made available for the book "Exploring Raspberry Pi"
*/

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <errno.h>
#include <sstream>
using namespace std;

void *counter(void *value){
int x=0, endCount = *((int *)value);
pthread_t tid = pthread_self();
cout << "Thread " << tid << " starting counting to " << endCount << endl;
while(x<endCount){ //while the value of x is less than endCount
usleep(10); //sleep for 10us — encourage main thread
if (x == endCount/2)
cout << "Thread " << tid << " is halfway done. " << endl;
X++; //increment the value of x by 1
}
cout << "Thread " << tid << " finished counting to " << endCount << endl;
return value; //return the pointer x (as a voidx)

}

int main(int argc, char xargv[]) {
if(argc!=2){
cout << "Please pass a valid number between 1 and 99" << endl;
return —-EINVAL;

UNIVERSITYATALBANY

State University of New York

g%%

istringstream ss(argv[1]);

int numCount, endCount=100000;

if((!(ss>>numCount)) || (numCount<l) || (numCount>99)){
cout << "Please pass a number between 1 and 99" << endl;
return —-EINVAL;

pthread_t thread[numCount];
for(int i=0; i<numCount; i++){
// pthread_create() returns @ on the successful creation of a thread
if(pthread_create(&thread[i], NULL, &counter, &endCount)!=0){
cout << "Failed to create the thread" << endl;

// array of handles to the threads

return 1;
}
else{

cout << "Successfully created a thread" << i << endl;
}

void* result;

for(int i=0; i<numCount; i++){
pthread_join(thread[i], &result); // allow the pthreads to complete

}

int xz =

(int x) result; // cast from voidx to intkx to get z

return 0;

37

Interrupt

> Interrupt caused by software / hardware
> Emulates hardware interrupt in form of exception
> CPU may halt the execution of current instruction immediately

> Interrupt handler called based on interrupt priority

User program Interrupt handler
e —— S, Fetch stage Execute stage Interrupt stage
o . o Interrupts
° ° disabled
Check for
© . |/ START Ry \ Fetch next o Execute " interrupt;
i _ NG A mstruction instruction Interrupts mtate interrupt
Intermupl —— L enabled handler
oceurs here i+1 -
°
°

(_mur)
. (HALT
M - N

nterrupt Processing
y N+ 1
Control Control
Hardware Software P -~ I — —
Device controller or (X1} il
other system hardware 'co' ”ug'n:': : '“g'('m
issues an interrupt Y coumter
Save remainder of
process state
Y information J
Processor finishes o . FSon 1
execution of current)] Interrupt General s Interrupt General
instruction service registers service registers
. | routine routine
I Process interrupt Y+ L |Retumn) Y+ L |Retum
Stack Stack
Processor signals pointer pointer
acknowledgment)
of interrupt Processor Processor
Restore process state
1 information T—-M
Processor pushes PSW N . N
and PC onto control N+1 User’s N+1 User's
s‘ack Y progmm progmm
Restore old PSW
1 and PC
Processor loads new
PC value based on Mai Mai
interrupt ain ain
memory memory
(a) Interrupt occurs after instruction (b) Return from interrupt
9% P I\LII IVE If{NS I;l"kYAT 'ALBANY at location N
N tate University o ew Yor!

nterrup

rocessing

User program

Interrupt
handler X

/

™

l

() Sequential interrupt processing

Interrupt
handler Y
-

4Illlllllll

User program

Interrupt
handler X

/

\

(

llllllIlllllllllIIIIIIIIIAIIIIIIII

(b) Nested interrupt processing

Interrupt
handler Y

Ba UNIVERSITYATALBANY

State University of New York

40

Hardware Interrupt

UNIVERSITY
Sta

te University of New York

41

#include <iostream>
#include <wiringPi.h>

Example COde #include <unistd.h>

using namespace std;

#define LED_GPIO 17 // this is GPIO17, Pin 11

> eXplorlngrpl/ChpO #define BUTTON_GPIO 27 // this is GPI027, Pin 13

// the Interrupt Service Routine (ISR) to light the LED

6/WiringPi/buttOn void lightLED(void){

static: int x: = 1;

turn the LED on

digitalWrite(LED_GPIO, HIGH); //
LED.Cpp cout << "Button pressed " << x++ << " times! LED on" << endl;

must be run as root
use the GPIO numbering
the LED

the Button

LED 1s ‘off

edge (i.e., button press)
&1ightLED);

countdown to program end
remaining..." << endl;
sleep for 1 second

program ends after 10s

}
int main() { //
wiringPiSetupGpio(); //
pinMode (LED_GPIO, OUTPUT); //
pinMode (BUTTON_GPIO, INPUT); //
digitalwWrite (LED_GPIO, LOW); //
cout << "Press the button on GPIO " << BUTTON_GPIO << endl;
// call the lightLED() ISR on the rising
wiringPiISR(BUTTON_GPIO, INT_EDGE_RISING,
for(int i=10; i>0; i—-){ //
cout << "You have " << i << " seconds
sleep(1); //
}
return 0; //
UNIVERSITYATALBANY }

State University of New York

#i
#i

#d
#d

in

in

{

File name : btnAndLed.c

Descriffti : _Tog a_led utton.
=Codé-Arom Adeept
E-mail “Xu eepi

Author : Jason

Date : 2015/05/02

nclude <wiringPi.h>

nclude <stdio.h>

efine LedPin 0
efine ButtonPin 1

t status = 1;
t main(void)
if (wiringPiSetup() == -1){
//when initialize wiring failed,print message to screen

printf("setup wiringPi failed !\n");
return -1;

pinMode (LedPin, OUTPUT);
pinMode (ButtonPin, INPUT);
pullUpDnControl(ButtonPin, PUD_UP);

while(1){

°
if(digitalRead(ButtonPin) == 0){ P 11
olling
if(digitalRead(ButtonPin) == 0){
status = !status;
digitalwrite(LedPin, status); //toggle the status of led
printf("The status of led is toggled !\n");
}
while(!digitalRead(ButtonPin));
}
}
return 0;

/*

* File name ¢ btnAndLed.c

* Description : Toggle a led by button.
* Website : www.adeept.com

* E-mail : support@Padeept.com

* Author : Jason

* Date : 2015/05/02

*/

#include <wiringPi.h>
#include <stdio.h>

#define LedPin 0
#define ButtonPin 1

int status = 1;

void myISR(void)
{

e [RteTTUPE

int main(void)

{

if(wiringPiSetup() == -1){
//when initialize wiring failed,print message to screen
printf("setup wiringPi failed !\n");
return -1;

}

pinMode(LedPin, OUTPUT);

pinMode (ButtonPin, INPUT);

pullUpDnControl(ButtonPin, PUD_UP);

if(wiringPiISR(ButtonPin, INT_EDGE_FALLING, myISR) < 0){
printf("ISR setup error!\n");
return -1;

}

while(1){
digitalWrite(LedPin, status);

}

return 0;

Interrupts in Raspberry Pi

> https://github.com/WiringP1/WiringP1/blob/maste

r/wiringP1/wiringPi.c
* wiringP1ISR()
> BCM Manual Pg 90

UNIVERSITYATALBANY
State University of New York

44

https://github.com/WiringPi/WiringPi/blob/master/wiringPi/wiringPi.c

Exception Handling

#include <iostream>
#include <vector>

int main() {
try {
std::cout << "Throwing an integer exception...\n";
throw 13;
} catech (3t 1) €
std::cout << " the integer exception was caught, with value: " << i << '\n‘';

}

12 iy 4
std::cout << "Creating a vector of size 5... \n";
std::vector<int> v(5);
std::cout << "Accessing the 11th element of the vector...\n";
std::cout << v.at(10); // vector::at() throws std::out_of_range

} catch (const std::exception& e) { // caught by reference to base

std::cout << " a standard exception was caught, with message '"
<< e.what() << "'\n";

} 45

ultiple Exceptions

1 #include <iostream>
2 #include <vector>

3

4 int main() {

5 try {

6 std::cout << "Throwing an integer exception...\n";

7 throw 13;

8 } catch (int i) {

9 std::cout << " the integer exception was caught, with value: " << i << '\n';
10 }

1

12 try {

13 std::cout << "Creating a vector of size 5... \n";

14 std::vector<int> v(5);

15 std::cout << "Accessing the 11th element of the vector...\n";
16 std::cout << v.at(10); // vector::at() throws std::out_of_range
17 throw 26;

18

19 } catch (const std::exception& e) { // caught by reference to base
20 std::cout << " a standard exception was caught, with message '"
21 << e.what() << "'\n";

22 } catch (int i) {

23 std::cout << "Not called the integer exception was caught, with value: " << i << '\n';
24 }

25

6} 46

Dispatching Thread

vV V ¥V YV YV VY VY VY VY

disable interrupts;

determine which thread should execute (scheduling);

if the same one, enable interrupts and return;

save state (registers) into current thread data structure;
save return address from the stack for current thread;
copy new thread state into machine registers;

replace program counter on the stack for the new thread;
enable interrupts;

return.

UNIVERSITYATALBANY
State University of New York

47

Race Condition

> When multiple threads read and write data 1tems
> The final result depends on the order of execution

= The “loser” of the race 1s the process that updates last and will

determine the final value of the variable

Thread 1 Thread 2

read value —
increase value

write back -

read value —

Expected

increase value

write back —

Integer value

0

0
0
1
1
1
2

<P
O
O
('

Thread 1

read value

increase value

write back

Thread 2

read value

increase value

write back

—

Integer value

0

0
0
0
0
1
1

48

lables from Wikipedia

14

16
17
18
19
20
21
2
23
24
23
26

Example Race Condition

void addListener (notifyProcedurex listener) {

(head == 0) (» Thread 1 suspended just before
head = malloc (sizeof (element_t));
head->listener = listener; llne 23
head->next = 0;
cail = head > Thread 2 calls addListener
tail->next = malloc (sizeof (element_t)); .
tail = tail->next; > Thread 2 changes value of tail
tail->listener = listener;
tail->next = 0; > Thread 1 resumes at Line 23

» Could result in a list with second to last element

points to a random address.

UNIVERSITYATALBANY
State University of New York

49

Mutual Exclusion - Mutex

> Prevents Race Condition
> Enables resource sharing

» Critical section 1s performed by a Crial Secor
single process or thread

> One thread blocks a critical section by
using locking technique (mutex)

> Other threads have to wait to get their . Q
turn to enter into the section. i |

Process 1 Process 2

UNIVERSITYATALBANY
State University of New York

pthread mutex()

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>

pthread_mutex_t mutexl = PTHREAD_MUTEX_INITIALIZER;

void print(char*x a, charx b) {
pthread_mutex_lock(&mutexl1); // comment out
praintf("1: %s\n"; a);
sleep(1);
printf(®2: %s\n", b);
pthread_mutex_unlock(&mutex1); // comment out

pthread mutex()

// These two functions will run concurrently.
void* print_i(void xptr) {
prinE (sl am™, * apa’)s

void* print_j(void xptr) {
print ("I am™; ™ In J%);

int main() {
pthread_t t1, t2;
int iretl = pthread_create(&tl, NULL, print_i, NULL);
int iret2 = pthread_create(&t2, NULL, print_j, NULL);

pthread_join(t1, NULL);
pthread_join(t2, NULL);
return 1;

}

UNIVERSII Y AL ALBANY

State University of New York

52

Mutex for Listener code

pthread _mutex_t lock = PTHREAD_MUTEX_ INITIALIZER;

void addListener (notifyProcedurex listener) {
pthread_mutex_lock (&lock);
i1f (head == 0) {

} else {

J
pthread_mutex_unlock (&lock);

tate University of New York

Deadlock

> The permanent blocking of a set of processes that either
compete for system resources or communicate with each other

> A set of processes 1s deadlocked when each process in the set

1s blocked awaiting an event that can only be triggered by
another blocked process 1n the set

> Example: addListener() and update()

P1 P2

UNIVERSITYATALBANY
State University of New York

O 0 9 N R W N -

T N S T NG S N R N T NG S T e S e S ey SO S S
A R W N = O O XN R W NN = O

List Data Structure in C

#include <stdlib.h> 27 // Procedure to update x.
#include <stdio.h> 28 void update (int newx) {
int x; // Value that gets updated. 2 X = newxj
typedef void notifyProcedure(int); // Type of notify proc. 30 // Notify listeners.
struct element { 31 element_t* element = head;
i | =
notifyProcedure* listener; // Pointer to notify procedure. 32 while ielem:nzl: tO) {
struct elementx next; // Pointer to the next item. . (» (element->listener)) (newx);
34 element = element->next;

}i

typedef struct element element_t; // Type of list elements. %)

element_t* head = 0; // Polinter to start of list. ,
i . . 37 // Example of notify procedure.
element_t* tail = 0; // Pointer to end of 1list. . . .
33 wvoid print (int arg) {
) 39 printf ("%d ", argqg);
// Procedure to add a listener. o)

void addListener (notifyProcedurex listener) {

if (head == 0) {
head = malloc (sizeof (element_t));
head->listener = listener;

head->next = 0;
tail = head;
} else {
tail->next = malloc(sizeof(element_t));
tail = tail->next;
tail->listener = listener;
tail->next = 0;

Deadlock Example

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>

pthread_mutex_t mutexl = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 PTHREAD_MUTEX_INITIALIZER;

// These two functions will run concurrently.
voidx print_i(void xptr) {
pthread_mutex_lock(&mutexl);
pthread_mutex_lock(&mutex2);
printt ("1 am Tn 3");
pthread_mutex_unlock(&mutex2);

pthread_mutex_unlock(&mutexl);
}

UINLY LINODOL L L “*™ /M\LD/MNIN1L
State University of New York

56

Deadlock Example

voidx print_j(void *xptr) {

int

¥

pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1);
printf("I am in j");
pthread_mutex_unlock(&mutexl1);
pthread_mutex_unlock(&mutex2);

main() {
pthread. t E1,; £2;

int iretl = pthread_create(&t1l, NULL, print_i, NULL);
int iret2 = pthread_create(&t2, NULL, print_j, NULL);

while(1){}
exit(@); //never reached.

UINLY LINODOL 1L L “*™ M\ LD/\AIAN 1L

State Univer:

sity of New York

57

Dining Philosopher’s Problem

> No two philosophers can i §

use the same fork at the
same time (mutual
exclusion)

» No philosopher must
starve to death (avoid
deadlock and starvation)

UNIVERSITYATALBANY
State University of New York

Solution 1: Dining Philosopher’s Prob.

> Each philosopher picks up first the fork on the
left and then the fork on the right. After the
philosopher 1s finished eating, the two forks
are replaced on the table.

> This solution leads to deadlock:

= [f all of the philosophers are hungry at the same time,
they all sit down, they all pick up the fork on their left,
and they all reach out for the other fork, which 1s not

UILh@E@kTY ATALBANY 59
State University of New York

Other Solutions: Dining Philosopher’s

> We could buy five additional forks (more resource)

> Teach the philosophers to eat spaghetti with just one
fork (change algorithm).

> We could consider adding an attendant who only
allows four philosophers at a time into the dining
room. With at most four seated philosophers, at least
one philosopher will have access to two forks.
(Semaphores)

UNIVERSITYATALBANY 60
State University of New York

Semaphore

» Admits a pool of processes or threads access
shared resources

> Signaling mechanism

> Binary Semaphore and Mutex operates
differently, provides same result

UNIVERSITYATALBANY
State University of New York

61

P - = &7

| After years of use without problems, a Berkeley Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a user in
Germany reported a deadlock that had not shown up in the test suite.

Problems with Foundations of Threads

> A model of computation:
= Bits: B={0, 1}
= Set of finite sequences of bits: B*
= Computation: f: B*— B*
= Composition of computations: f e f'
= Programs specify compositions of computations

> Threads augment this model to admit concurrency.

> But this model does not admit concurrency
gracefully.

UNIVERSITYATALBANY
State University of New York

63

Basic Sequential Computation

- initial state: b, € B*
]
]
: I
sequential b,=1,(b,.
comgosition E— TrlOn)
]
]
‘ final state: by

Formally, composition of computations is function composition.

UNIVERSITYATALBANY
Stat

e University of New York

64

When There are Threads

I
w2\ Program no longer computes
s 2 function.
I
I
I b,=f(b,)
suspend) I
I
I another thread can change
I the state
I

resume) P b =f(b"1)

Apparently, programmers find this model
appealing because nothing has changed in
the syntax.

UNIVERSITYATALBANY
Sta

te University of New York

65

Succinct Problem Statement

> Threads are wildly nondeterministic.

» The programmer’s job 1s to prune away the
nondeterminism
" by imposing constraints on execution order (e.g., mutexes)

* limiting shared data accesses (e.g., OO design).

UNIVERSITYATALBANY
State University of New York

66

Processes & Message Passing

> Processes use their own memory space

> Implementation requires hardware support of
Memory Management Unit (MMU)

> MMU provides address translation
> Message Passing :

= One process creates data and keeps 1n a shared memory
= Notifies another process

UNIVERSITYATALBANY
State University of New York

67

Processes: Problems

» Can be easier for shared variables
> Issues:

* What 1s producer produces data faster than consumer?
* How do we choose the size of buffer?
= Message passing can deadlock as well

> Solution:

= Higher level of concurrency models

UNIVERSITYATALBANY
State University of New York

68

