
1

Cyber-Physical Systems

Multitasking
IECE 553/453– Fall 2021
Prof. Dola Saha

2

Layers of Abstraction for Concurrency

3

Definition and Uses
Ø Threads are sequential procedures that share memory.
Ø Uses of concurrency:
§ Reacting to external events (interrupts)
§ Exception handling (software interrupts)
§ Creating the illusion of simultaneously running different programs

(multitasking)
§ Exploiting parallelism in the hardware (e.g. multicore machines).
§ Dealing with real-time constraints.

4

OS Management
Ø Resources are made available to multiple applications

Ø The processor is switched among multiple
applications so all will appear to be progressing

Ø The processor and I/O devices can be used efficiently

5

Process – several definitions
Ø A program in execution
Ø An instance of a program running on a computer
Ø The entity that can be assigned to and executed on

a processor
Ø A unit of activity characterized by the execution

of a sequence of instructions, a current state, and
an associated set of system resources

6

Process Elements
Ø Two essential elements of a process are:

Ø when the processor begins to execute the program
code, we refer to this executing entity as a process

Program code
n which may be shared with other processes that are executing the same

program

A set of data associated with that code

7

Process Elements
Ø While the program is executing, this process can

be uniquely characterized by a number of
elements

Identifier

State Priority Program
counter

Memory
pointers

Context
data

I/O status
information

Accounting
information

8

Processor I/O I/O

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

I/O
Main

Memory

Computer
Resources

Virtual
Memory

P1 P2 Pn

Processes & Resources

9

OS Control Structures
Ø Memory tables
§ used to keep track of both main (real)

and secondary (virtual) memory.
§ Some is reserved for use by the OS;

the remainder is available to
processes.

§ Processes are maintained on
secondary memory using some sort of
virtual memory or simple swapping
mechanism

Ø I/O tables
o used to manage I/O devices and

channels of the computer system.

Ø File Tables

10

Process Control Block
Ø Contains the process elements
Ø It is possible to interrupt a running

process and later resume execution
as if the interruption had not
occurred

Ø Created and managed by the
operating system

Ø Key tool that allows support for
multiple processes

Identifier

Figure 3.1 Simplified Process Control Block

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

Stallings

11

Process States

Trace
The behavior of an
individual process

by listing the
sequence of

instructions that
execute for that

process

The behavior of the processor
can be characterized by

showing how the traces of the
various processes are

interleaved

Dispatcher

Small program
that switches the
processor from
one process to

another

12

Process Execution
Ø Memory layout of

three processes
Ø Dispatcher program:

switches processor
from one process to
another

Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

13

Traces of Processes
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

8000
8001
8002
8003

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

 (a) Trace of Process A (b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2

14

Combined Traces
Ø Processor’s Point of

View

Ø Blue shaded area is
Dispatcher program

1 5000
2 5001
3 5002
4 5003
5 5004
6 5005
-------------------- Timeout
7 100
8 101
9 102
10 103
11 104
12 105
13 8000
14 8001
15 8002
16 8003
----------------I/O Request
17 100
18 101
19 102
20 103
21 104
22 105
23 12000
24 12001
25 12002
26 12003

27 12004
28 12005
--------------------Timeout
29 100
30 101
31 102
32 103
33 104
34 105
35 5006
36 5007
37 5008
38 5009
39 5010
40 5011
--------------------Timeout
41 100
42 101
43 102
44 103
45 104
46 105
47 12006
48 12007
49 12008
50 12009
51 12010
52 12011
--------------------Timeout

 100 = Starting address of dispatcher program

 Shaded areas indicate execution of dispatcher process;
 first and third columns count instruction cycles;
 second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2

15

Two State Process Model
Ø Principal responsibility of OS is controlling the

execution of processes
§ determining the interleaving pattern for execution and
§ allocating resources to processes.

Not
Running Running

Figure 3.5 Two-State Process Model

Dispatch

Dispatch
Queue

Enter Exit

Pause

Pause

Enter Exit

(a) State transition diagram

(b) Queuing diagram

Processor

16

Two State Process ModelNot
Running Running

Figure 3.5 Two-State Process Model

Dispatch

Dispatch
Queue

Enter Exit

Pause

Pause

Enter Exit

(a) State transition diagram

(b) Queuing diagram

Processor

Not
Running Running

Figure 3.5 Two-State Process Model

Dispatch

Dispatch
Queue

Enter Exit

Pause

Pause

Enter Exit

(a) State transition diagram

(b) Queuing diagram

Processor

State Transition Diagram

Queueing Diagram

17

Reasons for Process Creation

18

Process Creation

Process
spawning

• When the
OS creates a
process at
the explicit
request of
another
process

Parent
process

• Is the
original,
creating,
process

Child process

• Is the new
process

19

Process Termination
Ø There must be a means for a process to

indicate its completion
Ø A batch job should include a HALT instruction

or an explicit OS service call for termination
Ø For an interactive application, the action of the

user will indicate when the process is
completed (e.g. log off, quitting an
application)

20

Reasons
Ø Possible reasons:
§ Normal Completion
§ Time limit exceeded
§ Memory unavailable
§ Parent termination
§

Normal completion The process executes an OS service call to indicate that it has completed

running.

Time limit exceeded The process has run longer than the specified total time limit. There are a

number of possibilities for the type of time that is measured. These include total
elapsed time ("wall clock time"), amount of time spent executing, and, in the
case of an interactive process, the amount of time since the user last provided
any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed to use,

or it tries to use it in an improper fashion, such as writing to a read-only file.

Arithmetic error The process tries a prohibited computation, such as division by zero, or tries to

store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event to

occur.

I/O failure An error occurs during input or output, such as inability to find a file, failure to

read or write after a specified maximum number of tries (when, for example, a
defective area is encountered on a tape), or invalid operation (such as reading
from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of

branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated the process

(e.g., if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate all

of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

21

Five State Process Model

New Ready

Blocked

Running Exit

Figure 3.6 Five-State Process Model

Admit
Dispatch

Timeout

Release

Event
Wait

Event
Occurs

22

UNIX Process State Transition Diagram

23

Queuing Model

Figure 3.8 Queuing Model for Figure 3.6

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event
Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

Figure 3.8 Queuing Model for Figure 3.6

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event
Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

Single Blocked Queue Multiple Blocked Queue

24

Processes Characteristics
Ø Resource Ownership
§ Process includes a virtual address space to hold the process image
Ø The OS performs a protection function to prevent unwanted interference

between processes with respect to resources

Ø Scheduling / Execution
§ Follows an execution path that may be interleaved with other processes
Ø A process has an execution state (Running, Ready, etc.) and a dispatching

priority, and is the entity that is scheduled and dispatched by the OS

25

Multiple Process Handling
Ø Remote Procedure Call (RPC)
Ø MPI (Message Passing Interface)

26

Process & Thread
Ø The unit of dispatching is referred to as a

thread or lightweight process
Ø The unit of resource ownership is referred to as

a process or task
Ø Multithreading - The ability of an OS to

support multiple, concurrent paths of execution
within a single process

27

Single Threaded Approach
Ø A single thread of

execution per process,
in which the concept of
a thread is not
recognized, is referred
to as a single-threaded
approach

Ø Example: MS-DOS

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

28

Multiple Threaded Approach
Ø Multiple Threads

per process
Ø One process

multiple threads
(Java Runtime)

Ø Multiple processes
each with multiple
threads (UNIX,
Windows, Solaris)

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

29

Process Model
Single-Threaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

Multithreaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread Thread Thread

Figure 4.2 Single Threaded and Multithreaded Process Models

Thread
Control
Block

Thread
Control
Block

30

Benefits of Thread

Takes less
time to create
a new thread

than a
process

Less time to
terminate a

thread than a
process Switching between

two threads takes
less time than

switching between
processes

Threads enhance
efficiency in

communication
between programs

31

User and Kernel level Threads

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

32

Thread Creation
Ø Prototype:
§ int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,

void*(*start_routine)(void *), void *arg);

o tid: an unsigned long integer that indicates a threads id
o tattr: attributes of the thread – usually NULL
o start_routine: the name of the function the thread starts executing
o arg: the argument to be passed to the start routine – only one

§ after this function gets executed, a new thread has been created and is
executing the function indicated by start_routine

33

Waiting for a Thread
Ø Prototype:
§ int pthread_join(thread_t tid, void **status);
o tid: identification of the thread to wait for
o status: the exit status of the terminating thread – can be NULL

§ the thread that calls this function blocks its own execution until the thread
indicated by tid terminates its execution

o finishes the function it started with or
o issues a pthread_exit() command – more on this in a minute

34

Exiting a Thread
Ø pthreads exist in user space and are seen by the kernel as a

single process
§ if one issues and exit() system call, all the threads are terminated by the OS
§ if the main() function exits, all of the other threads are terminated

Ø To have a thread exit, use pthread_exit()
Ø Prototype:
§ void pthread_exit(void *status);
o status: the exit status of the thread – passed to the status variable in the pthread_join()

function of a thread waiting for this one

35

Create Thread
#include <pthread.h>
#include <stdio.h>
void *PrintHello(void * id){

printf(“Hello from thread %d\n", id);
}

void main (){
pthread_t thread0, thread1;

pthread_create(&thread0, NULL, PrintHello, (void *) 0);
pthread_create(&thread1, NULL, PrintHello, (void *) 1);

}

36

Create Thread and Join
#include <pthread.h>
#include <stdio.h>
void *PrintHello(void * id){

printf(“Hello from thread %d\n", id);
}

void main (){
pthread_t thread0, thread1;

pthread_create(&thread0, NULL, PrintHello, (void *) 0);
pthread_create(&thread1, NULL, PrintHello, (void *) 1);
pthread_join(thread0, NULL);
pthread_join(thread1, NULL);

}

37

Counter Example

38

Interrupt
Ø Interrupt caused by software / hardware
Ø Emulates hardware interrupt in form of exception
Ø CPU may halt the execution of current instruction immediately
Ø Interrupt handler called based on interrupt priority

39

Interrupt Processing

40

Interrupt Processing

41

Hardware Interrupt

GP
IO

 1
7

GPIO 27

42

Example Code
Ø exploringrpi/chp0

6/wiringPi/button
LED.cpp

43

Polling

Interrupt

Code from Adeept

44

Interrupts in Raspberry Pi
Ø https://github.com/WiringPi/WiringPi/blob/maste

r/wiringPi/wiringPi.c
§ wiringPiISR()

Ø BCM Manual Pg 90

https://github.com/WiringPi/WiringPi/blob/master/wiringPi/wiringPi.c

45

Exception Handling

46

Multiple Exceptions

47

Dispatching Thread
Ø disable interrupts;
Ø determine which thread should execute (scheduling);
Ø if the same one, enable interrupts and return;
Ø save state (registers) into current thread data structure;
Ø save return address from the stack for current thread;
Ø copy new thread state into machine registers;
Ø replace program counter on the stack for the new thread;
Ø enable interrupts;
Ø return.

48

Race Condition
Ø When multiple threads read and write data items
Ø The final result depends on the order of execution
§ The “loser” of the race is the process that updates last and will

determine the final value of the variable

Ex
pe
ct
ed

Ra
ce

Ta
bl

es
 fr

om
 W

iki
pe

dia

49

Example Race Condition
Ø Thread 1 suspended just before

line 23
Ø Thread 2 calls addListener
Ø Thread 2 changes value of tail
Ø Thread 1 resumes at Line 23

Ø Could result in a list with second to last element
points to a random address.

50

Mutual Exclusion - Mutex
Ø Prevents Race Condition
Ø Enables resource sharing
Ø Critical section is performed by a

single process or thread
Ø One thread blocks a critical section by

using locking technique (mutex)
Ø Other threads have to wait to get their

turn to enter into the section.

51

pthread_mutex()

52

pthread_mutex()

53

Mutex for Listener code

54

Deadlock
Ø The permanent blocking of a set of processes that either

compete for system resources or communicate with each other
Ø A set of processes is deadlocked when each process in the set

is blocked awaiting an event that can only be triggered by
another blocked process in the set

Ø Example: addListener() and update()

55

List Data Structure in C

56

Deadlock Example

57

Deadlock Example

58

Dining Philosopher’s Problem
Ø No two philosophers can

use the same fork at the
same time (mutual
exclusion)

Ø No philosopher must
starve to death (avoid
deadlock and starvation)

P3

Figure 6.11 Dining Arrangement for Philosophers

P0

P2

P4

P1

59

Solution 1: Dining Philosopher’s Prob.
Ø Each philosopher picks up first the fork on the

left and then the fork on the right. After the
philosopher is finished eating, the two forks
are replaced on the table.

Ø This solution leads to deadlock:
§ If all of the philosophers are hungry at the same time,

they all sit down, they all pick up the fork on their left,
and they all reach out for the other fork, which is not
there.

60

Other Solutions: Dining Philosopher’s
Ø We could buy five additional forks (more resource)
Ø Teach the philosophers to eat spaghetti with just one

fork (change algorithm).
Ø We could consider adding an attendant who only

allows four philosophers at a time into the dining
room. With at most four seated philosophers, at least
one philosopher will have access to two forks.
(Semaphores)

61

Semaphore
Ø Admits a pool of processes or threads access

shared resources
Ø Signaling mechanism
Ø Binary Semaphore and Mutex operates

differently, provides same result

62

After years of use without problems, a Berkeley Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a user in
Germany reported a deadlock that had not shown up in the test suite.

63

Problems with Foundations of Threads
Ø A model of computation:
§ Bits: B = {0, 1}
§ Set of finite sequences of bits: B*
§ Computation: f : B*® B*
§ Composition of computations: f • f '
§ Programs specify compositions of computations

Ø Threads augment this model to admit concurrency.
Ø But this model does not admit concurrency

gracefully.

64

Basic Sequential Computation

initial state: b0 Î B*

final state: bN

sequential
composition

bn = fn (bn-1)

Formally, composition of computations is function composition.

65

When There are Threads

suspend

A program no longer computes
a function.

resume

another thread can change
the state

bn = fn (bn-1)

b'n = fn (b'n-1)

Apparently, programmers find this model
appealing because nothing has changed in
the syntax.

66

Succinct Problem Statement
Ø Threads are wildly nondeterministic.

Ø The programmer’s job is to prune away the
nondeterminism

§ by imposing constraints on execution order (e.g., mutexes)
§ limiting shared data accesses (e.g., OO design).

67

Processes & Message Passing
Ø Processes use their own memory space
Ø Implementation requires hardware support of

Memory Management Unit (MMU)
Ø MMU provides address translation
Ø Message Passing :
§ One process creates data and keeps in a shared memory
§ Notifies another process

68

Processes: Problems
Ø Can be easier for shared variables
Ø Issues:
§ What is producer produces data faster than consumer?
§ How do we choose the size of buffer?
§ Message passing can deadlock as well

Ø Solution:
§ Higher level of concurrency models

