
1

Cyber-Physical Systems

Communication
IECE 553/453– Fall 2021
Prof. Dola Saha

2

Why do we need Communication?
§ Connect different systems together
o Two embedded systems
o A desktop and an embedded system
§ Connect different chips together in the same embedded system
o MCU to peripheral
o MCU to MCU

3

How much can we transmit?

Ø Shannon’s noisy channel coding theorem
§ Says you can achieve error-free communicate at any

Ø Rate up to the channel capacity, and can’t do any
better

§ C: channel capacity, in bits / s
§ W: bandwidth amount of frequency “real estate”, in Hz (cycles / s)
§ S: Signal power
§ N: Noise power

𝐶 = 𝑊𝑙𝑜𝑔!
𝑆 + 𝑁
𝑁

4

Communication Methods
Ø Different physical layers methods: wires, radio frequency (RF), optical (IR)
Ø Different encoding schemes: amplitude, frequency, and pulse-width

modulation

5

Dimensions to consider
Ø bandwidth – number of wires – serial/parallel
Ø speed – bits/bytes/words per second
Ø timing methodology – synchronous or asynchronous
Ø number of destinations/sources
Ø arbitration scheme – daisy-chain, centralized,

distributed
Ø protocols – provide some guarantees as to correct

communication

6

Parallel and Serial Bus

7

Serial

8

Serial Comm with buffer

9

Parallel and Serial Communication
Ø Serial
§ Single wire or channel to transmit

information one bit at a time
§ Requires synchronization between

sender and receiver
§ Sometimes includes extra wires for

clock and/or handshaking
§ Good for inexpensive connections

(e.g., terminals)
§ Good for long-distance connections

(e.g., LANs)

Ø Parallel
§ Multiple wires to transmit information

one byte or word at a time
§ Good for high-bandwidth

requirements (CPU to disk)
§ Crosstalk creates interference between

multiple wires
o Length of link & Higher frequency

of transmission increases crosstalk
§ More expensive

wiring/connectors/current
requirements

10

Parallel vs. Serial Digital Interfaces
Ø Parallel (one wire per bit)
§ ATA: Advanced Technology Attachment
§ PCI: Peripheral Component Interface
§ SCSI: Small Computer System Interface

§ Serial (one wire per direction)
§ RS-232
§ SPI: Serial Peripheral Interface bus
§ I2C: Inter-Integrated Circuit
§ USB: Universal Serial Bus
§ SATA: Serial ATA
§ Ethernet, IrDA, Firewire, Bluetooth, DVI, HDMI

Ø Mixed (one or more “lanes”)
§ PCIe: PCI Express

PCI

SCSI

USB

RS-232

11

Parallel vs Serial Digital Interfaces
Ø Parallel connectors have been replaced by Serial
§ Significant crosstalk/inter-wire interference for parallel

connectors
§ Maintaining synchrony across the multiple wires
§ Serial connection speeds can be increased by increasing

transmission freq, but parallel crosstalk gets worse at
increased freq

12

Serial Peripheral Interface (SPI)
Ø Synchronous full-duplex communication
Ø Can have multiple slave devices
Ø No flow control or acknowledgment
Ø Slave cannot communicate with slave directly.

SCLK: serial clock
SS: slave select (active low)

MOSI: master out slave in
MISO: master in slave out

Serial Peripheral Interface
http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/
SPI_single_slave.svg/350px-SPI_single_slave.svg.png

13

SPI – Point-to-point and Daisy Chain

SCLK: serial clock
SS: slave select (active low)

MOSI: master out slave in
MISO: master in slave out

Pictures: https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/

Point-to-point Daisy Chain

14

Data Exchange

Ø Master has to provide clock to slave
Ø Synchronous exchange: for each clock pulse, a bit is shifted

out and another bit is shifted in at the same time. This process
stops when all bits are swapped.

Ø Only master can start the data transfer

15

Clock

16

Clock Phase and Polarity
Ø CPHA (Clock PHase)
§ determines when data goes on bus relative to clock
§ = 0 data Tx edge active to idle
§ = 1 data Tx edge idle to active

Ø CPOL (Clock POLarity)
§ sets polarity of Clk during idle state
§ =0 clock idles low between transfers
§ =1 clock idles high between transfers

Ø Combination of CPOL and CPHA determines the clock edge for transmitting and
receiving.

Mode 0 Mode 1

Mode 2 Mode 3

Clock Phase (CPHA)

C
lo

ck
 P

ol
ar

ity
 (C

PO
L)

CPHA = 0

C
PO

L
=

0

CPHA = 1

C
PO

L
=

1

Sampling
Edge

Sampling
Edge

Toggling
Edge

Toggling
Edge

17

SPI Modes

SPI Mode CPOL CPHA
Clock

Polarity in
Idle State

Clock Phase Used to Sample
and/or Shift the Data

0 0 0 Logic low Data sampled on rising edge and
shifted out on the falling edge

1 0 1 Logic low Data sampled on the falling edge
and shifted out on the rising edge

2 1 1 Logic high Data sampled on the falling edge
and shifted out on the rising edge

3 1 0 Logic high Data sampled on the rising edge
and shifted out on the falling edge

18

Clock Phase and Polarity

SSN

SCLK
CPOL = 0
CPHA = 0

SCLK
CPOL = 0
CPHA = 1

SCLK
CPOL = 1
CPHA = 0

SCLK
CPOL = 1
CPHA = 1

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

bout[2]bout[0] bout[1] bout[3] bout[4] bout[5] bout[6] bout[7]

Mode 0 Mode 1

Mode 2 Mode 3

Clock Phase (CPHA)

C
lo

ck
 P

ol
ar

ity
 (C

PO
L)

CPHA = 0

C
PO

L
=

0

CPHA = 1

C
PO

L
=

1

Sampling
Edge

Sampling
Edge

Toggling
Edge

Toggling
Edge

19

SPI: Pros and Cons
Ø Pros
§ Simplest way to connect 1

peripheral to a micro
§ Fast (10s of Mbits/s, not on

MSP) because all lines
actively driven, unlike I2C

§ Clock does not need to be
precise

§ Nice for connecting 1 slave

Ø Cons
§ No built-in

acknowledgement of data
§ Not very good for multiple

slaves
§ Requires 4 wires
§ 3 wire variants exist...some

get rid of full duplex and
share a data line, some get
rid of slave select

20

Analog to Digital Converter
Ø DGND : digital ground pin for the chip
Ø CS : chip select.
Ø DIN : data in from the MC itself.
Ø DOUT: data out pin.
Ø CLK: clock pin.
Ø AGND: analog ground and obviously connects to

ground.
Ø VREF: analog reference voltage. You can change

this if you want to change the scale. You probably
want to keep it the same so keep this as 3.3v.

Ø VDD: positive power pin for the chip.

21

MCP 3008

22

ADXL345

Serial Data Input (SDI)

23

Communication

24

Analog to Digital Converter

RPi 3.3V
RPi 3.3V
RPi GND
RPi SClk
RPi MISO
RPi MOSI
RPi CE0
RPi GND

25

Connect a Sensor

26

Channel Select

Ø The device will begin to sample the analog input on the fourth rising edge of the
clock after the start bit has been received. The sample period will end on the falling
edge of the fifth clock following the start bit.

27

Enable SPI in Raspberry PI
Ø sudo raspi-config
Ø 5 Interfacing Options
Ø P4 SPI
Ø Would you like the SPI interface to be enabled?
§ Select Yes

Ø The SPI interface is enabled
§ Select OK

Ø Finish

28

Has SPI been really enabled?
Ø sudo ls /dev/spi*
Ø /dev/spidev0.0 /dev/spidev0.1

29

SPI Bus on Linux
Ø lsmod | grep spi

Ø modprobe spidev

Ø modprobe spi_bcm2835

Ø dmesg | grep spi

It formats the contents of the file /proc/modules, which
contains information about the status of all currently-loaded
LKMs.

modprobe intelligently adds or removes a module
from the Linux kernel

display messages from the linux kernel ring buffer

30

SPI Using User->Kernel Modules
Ø ioctl
§ /usr/include/asm-generic/ioctl.h

Ø spidev
§ /usr/include/linux/spi/spidev.h
§ https://github.com/raspberrypi/tools/blob/master/arm-bcm2708/gcc-linaro-

arm-linux-gnueabihf-raspbian/arm-linux-
gnueabihf/libc/usr/include/linux/spi/spidev.h

Ø Kernel Module
§ https://github.com/raspberrypi/linux/blob/rpi-3.12.y/drivers/spi/spi-

bcm2835.c

31

ioctl() – Input/Output Control
Ø int ioctl(int fd, unsigned long request, ...);
Ø The ioctl() system call manipulates the underlying device

parameters of special files.
Ø Input Arguments
§ fd – File Descriptor
§ request – Device dependent request code
§ Third Argument – Integer value of a pointer to data for transfer

Ø Return
§ 0 on success.
§ -1 on error.

32

spi_ioc_transfer structure

33

SPI Dev Interface
Ø https://www.kernel.org/doc/Documentation/spi/sp

idev

Ø /dev/spidevB.C (B=bus, C=slave number).
§ On RPi it is /dev/spidev0.0

Ø To open the device:
§ fd=open("/dev/spidev0.0",O_RDWR);

34

SPI Dev Interface
Ø To set the mode:
§ int mode=SPI_MODE_0;
§ result = ioctl(spi_fd , SPI_IOC_WR_MODE , &mode);

Ø To set the bit order:
§ int lsb_mode =0;
§ result = ioctl(spi_fd, SPI_IOC_WR_LSB_FIRST,

&lsb_mode);

35

SPI Dev Interface
Ø To transfer:
§ ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);

Ø To close:
§ close(fd);

36

ADXL 345

37

MCP 3008 Data Transfer

38

Name Change for SPI Ports
Ø Adafruit:
§ MOSI: main output, secondary input
§ MISO: main input, secondary output

Ø Sparkfun:
§ SDO – Serial Data Out.
§ SDI – Serial Data In.
§ CS – Chip Select.
§ COPI (controller out / peripheral in).
§ CIPO (controller in / peripheral out).
§ SDIO – Serial Data In/Out. A bi-directional serial signal.
https://hackaday.com/2020/06/29/updating-the-language-of-spi-pin-labels-to-remove-casual-references-to-slavery/
https://www.sparkfun.com/spi_signal_names

https://hackaday.com/2020/06/29/updating-the-language-of-spi-pin-labels-to-remove-casual-references-to-slavery/
https://www.sparkfun.com/spi_signal_names

39

Inter-Integrated Circuit (I2C)
Ø Designed for low-cost, medium data rate applications by Philips in the early 1980’s
§ Original purpose: connect a CPU to peripheral chips in a TV-set
§ Today: a de-facto standard for 2-wire communications
§ Since October 10, 2006, no licensing fees are required to implement the I²C protocol.

However, fees are still required to obtain I²C slave addresses allocated by NXP (acquired
Philips).

Ø Characteristics
§ Serial, byte-oriented
§ Multi-master, multi-slave
§ Two bidirectional open-drain lines, plus ground
o Serial Data Line (SDA)

o Serial Clock Line (SCL)
o SDA and SCL need to pull up with resistors

40

Inter-Integrated Circuit (I2C)

Serial
data
line

Serial
clock
line

Ø SDA and SCL have to be open-drain
§ Connected to positive if the output is 1
§ In high impedance state if the output is 0

Ø Each Device has a unique address (7, 10 or 16 bits). Addr 0 for broadcast

Ø A master device, such as the RPi, controls the bus, and many
addressable slave devices can be attached to the same two wires.

Ø Up to 100 kbit/s in the standard mode, up to 400 kbit/s in the fast mode,
and up to 3.4 Mbit/s in the high-speed mode.

https://learn.adafruit.com/i2c-addresses/the-list

41

Timing Diagram

Ø A START condition is a high-to-low transition on SDA when SCL
is high.

Ø A STOP condition is a low to high transition on SDA when SCL is
high.

Ø The address and the data bytes are sent most significant bit first.
Ø Master generates the clock signal and sends it to the slave during

data transfer

42

Example: Write 1 byte to device register
Ø Master sends a start bit (i.e., it pulls SDA low, while SCL is high).
Ø While the clock toggles, the 7-bit slave address is transmitted one bit at a

time.
Ø A read bit (1) or write bit (0) is sent, depending on whether the master

wants to read or write to/from a slave register.
Ø The slave responds with an acknowledge bit (ACK = 0).
Ø In write mode, the master sends a byte of data one bit at a time, after which

the slave sends back an ACK bit. To write to a register, the register address
is sent, followed by the data value to be written.

Ø Finally, to conclude communication, the master sends a stop bit (i.e., it
allows SDA to float high, while SCL is high).

43

I2C Addressing

Repeated Start Condition

44

Example Use

1. The master sends a start bit (i.e., it pulls SDA low, while SCL is high)
2. While the clock toggles, the 7-bit slave address is transmitted one bit at a time
3. A read bit (1) or write bit (0) is sent, depending on whether the master wants to read or write
4. The slave responds with an acknowledge bit (ACK = 0).
5. In write mode, the master sends a byte of data one bit at a time, after which the slave sends back an ACK

bit. To write to a register, the register address is sent, followed by the data value to be written.
6. The master sends a stop bit (i.e., it allows SDA to float high, while SCL is high)

45

Multiple Masters
Ø “Wired-AND” bus: A sender can pull the lines to low, even if other senders

are trying to drive the lines to high
Ø In single master systems, arbitration is not needed.
Ø Arbitration for multiple masters:
§ During data transfer, the master constantly checks whether the SDA voltage level matches

what it has sent.
§ When two masters generate a START setting concurrently, the first master which detects

SDA low while it has actually intended to set SDA high will lose the arbitration and let the
other master complete the data transfer.

§ Loosing Master goes to Slave Mode
§ Retries transmission after the STOP Bit

46

Clock Synchronization
Ø Clock synchronization is needed when there

are multiple masters.
Ø Wired-AND connection for clock

synchronization
§ Each master has a counter. Counter resets if SCL

goes LOW. When the counter counts down to
zero, the master releases SCL and thus SCL goes
high.

§ SCL remains LOW if any master pulls it LOW.
§ When all masters concerned have counted off

their LOW period, the clock line is released and
goes HIGH.

§ After going high, all masters start counting their
HIGH periods. The first master to complete its
HIGH period pulls the SCL line LOW again.

Source: I2C Specifications

WIRED AND: When one Master pulls
SCL Low, no other Master can pull it
high.

A synchronized signal on SCL is
obtained, where the slowest device
determines the length of the low period
and the fastest device determines the
length of the high period.

47

Working Modes
Ø Master-sender
§ Master issues START and ADDRESS, and then transmits data to the addressed slave device

Ø Master-receiver
§ Master issues START and ADDRESS, and receives data from the addressed slave device

Ø Slave-sender
§ Master issues START and the ADDRESS of the slave, and then the slave sends data to the master

Ø Slave-receiver
§ Master issues START and the ADDRESS of the slave, and then the slave receives data from the

master.

48

Is it better than SPI?
Ø SPI requires 4 lines
Ø SPI allows only one Master
Ø SPI allows high data rate (clock rate up to 10MHz

in some devices) full duplex connections
Ø In SPI, the slave devices are not addressable (CS

line used)
Ø More Information:
§ https://www.i2c-bus.org/specification/

49

Enable I2C in Raspberry Pi
Ø Similar to enabling SPI
Ø Use sudo raspi-config

50

I2C Timing

51

Detect I2C Devices
Ø i2cdetect –y –r 1
§ Indicates one device with address 0x18

52

Universal Asynchronous Receiver and Transmitter

Ø Universal
§ Programmable format, speed, etc.

Ø Asynchronous
§ Sender provides no clock signal to receivers

Ø Half Duplex
Ø Any node can initiate communication
Ø Two lanes are independent of each other

53

Data Frame

Ø Sender and receiver uses the same transmission speed
(10% clock shift/difference is tolerated)

Ø Data frame
§ One start bit
§ Data (LSB first or MSB, and size of 7, 8, 9 bits)
§ Optional parity bit
§ One or two stop bit

54

Baud Rate
Ø Historically used in telecommunication to represent the

number of pulses physically transferred per second
Ø In digital communication, baud rate is the number of bits

physically transferred per second
Ø Example:
§ Baud rate is 9600
§ each frame: a start bit, 8 data bits, a stop bit, and no parity bit.
§ Transmission rate of actual data
o 9600/8 = 1200 bytes/second
o 9600/(1 + 8 + 1) = 960 bytes/second

§ The start and stop bits are the protocol overhead

55

Error Detection
Ø Even Parity: total number of “1” bits in data and

parity is even
Ø Odd Parity: total number of “1” bits in data and parity

is odd
Ø Example: Data = 10101011 (five “1” bits)
§ The parity bit should be 0 for odd parity and 1 for

even parity
Ø This can detect single-bit data corruption

56

Transmitting 0x32 and 0x3C

1 start bit, 1 stop bit, 8 data bits, no parity, baud rate = 9600

57

USB Layers

58

USB Connection

Ø Four shielded wires: two for power (+5V, ground), two for
data (D+, D-)

Ø D+ and D- are twisted to cancel external electromagnetic
interference

Standard A Standard B

Image from wiki.com

59

USB Physical Layer
Ø Transmitter Block

Diagram
Ø Separate CRCs for

control and data fields of
each packet

https://www.usb3.com/whitepapers/USB%203%200%20(11132008)-final.pdf

60

USB PHY
Ø Receiver Block

Diagram

61

8b/10b Encoding
Ø ensure sufficient data

transitions for clock recovery
Ø A DC-balanced serial data

stream
§ it has almost same number of 0s and 1s

for a given length of data stream.
§ DC-balance is important for certain

media as it avoids a charge being built
up in the media.

62

Simple Differential Signaling
Ø Information is transmitted using two

complementary signals
Ø Improves reducing noise

Images from wiki

63

Controller Area Network (CAN) Bus
Ø Serial communication
Ø Multi-Master Protocol
Ø Compact
§ Twisted Pair Bus line

Ø 1 Megabit per second

64

Before CAN

65

After CAN

66

Layered Approach (CAN)
Application Layer

CAN LAYERS

Data Link
LLC sublayer

Acceptance filtering
Overload notification
Recovery management

MAC sublayer

Data encapsulation/decapsulation
Frame coding (stuffing/destuffing)
Medium access management
Error detection
Error signaling
Acknowledgement
Serialization/Deserialization

Physical Bit encoding/decoding
Bit timing
Synchronization

Figure 13.1 CAN layers

Driver/Receiver characteristics

Supervisor

Fault
Confinement

Bus Failure
Management

