Cyber-Physical Systems

Discrete Dynamics

IECE 553/453– Fall 2021

Prof. Dola Saha

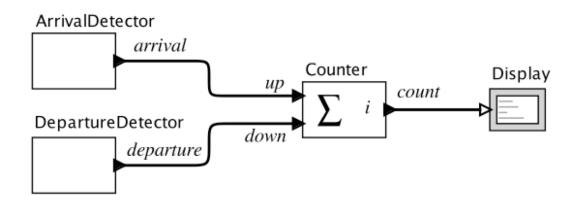
- Discrete = "individually separate / distinct"
- A discrete system is one that operates in a sequence of discrete *steps* or has signals taking discrete *values*.
- > It is said to have **discrete dynamics**.

A discrete event occurs at an instant of time rather than over time.

Discrete Systems: Example

Count the number of cars that are present in a parking garage by sensing cars enter and leave the garage. Show this count on a display.

Example: count the number of cars in a parking garage by sensing those that enter and leave:



Example: count the number of cars that enter and leave a parking garage:
ArrivalDetector
up Counter count
Display

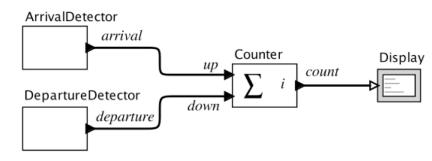
DepartureDetector

departure

down

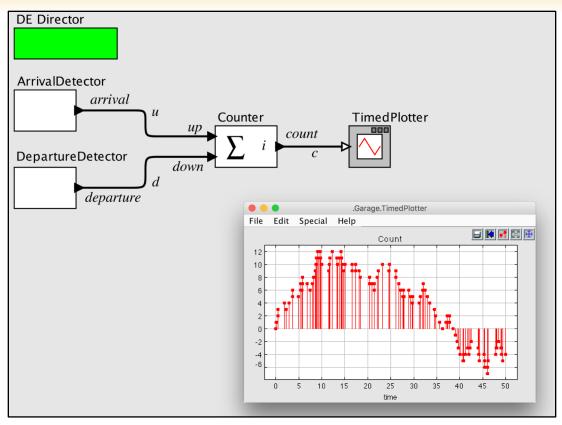
- ▶ Pure signal: $up: \mathbb{R} \to \{absent, present\}$
 - Carries no value, information is being present or absent
- > at any time $t \in R$, the input up(t) is
 - either *absent*, meaning that there is no event at that time,
- or *present*, meaning that there is.
 UNIVERSITY AT ALBANY
 State University of New York

Example: count the number of cars that enter and leave a parking garage:

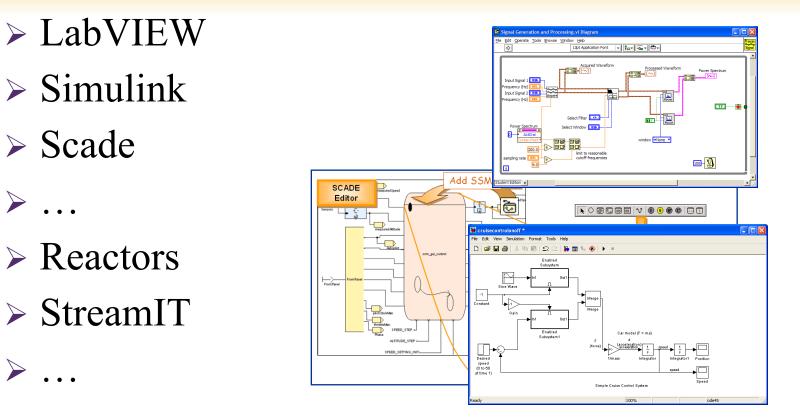


 Pure signal: $up: \mathbb{R} \to \{absent, present\}$ Discrete actor: Counter: $(\mathbb{R} \to \{absent, present\})^P \to (\mathbb{R} \to \{absent\} \cup \mathbb{N})$ $P = \{up, down\}$

Demonstration of Ptolemy II Model



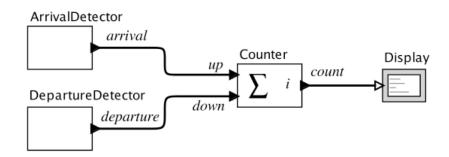
Actor Modeling Languages



For any $t \in \mathbb{R}$ where $up(t) \neq absent$ or $down(t) \neq absent$ the Counter **reacts**. It produces an output value in \mathbb{N} and changes its internal **state**.

State: condition of the system at a particular point in time

• Encodes everything about the past that influences the system's reaction to current input



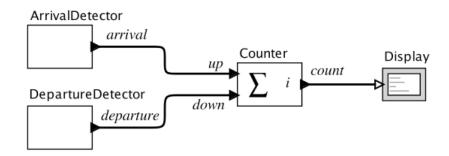
Inputs and Outputs at a Reaction

For $t \in \mathbb{R}$ the inputs are in a set

$$Inputs = (\{up, down\} \rightarrow \{absent, present\})$$

and the outputs are in a set

$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}) ,$$

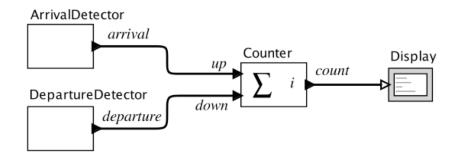


What are some scenarios that the given parking garage (interface) design does not handle well? For t ∈ R the inputs are in a set

Inputs = ({up, down} \rightarrow {absent, present})

and the outputs are in a set

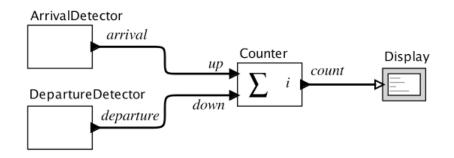
$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}),$$



State Space

A practical parking garage has a finite number *M* of spaces, so the state space for the counter is

States =
$$\{0, 1, 2, \cdots, M\}$$
.



Finite State Machine (FSM)

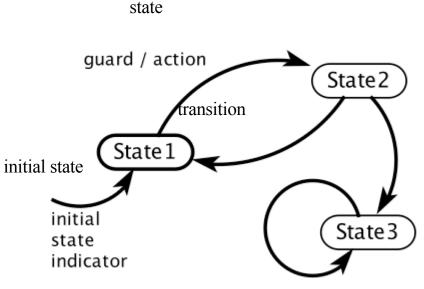
- A state machine is a model of a system with discrete dynamics
 - at each reaction maps inputs to outputs
 - Map may depend on current state
- An FSM is a state machine where the set *States* is finite. *States* = {State1, State2, State3}

FSM Notation

Input declarations, Output declarations, Extended state declarations

The guard determines whether the transition may be taken on a reaction.

The action specifies what outputs are produced on each reaction.



self loop or self transition

Examples of Guards for Pure Signals

trueTransition is always enabled. p_1 Transition is enabled if p_1 is present. $\neg p_1$ Transition is enabled if p_1 is absent. $p_1 \land p_2$ Transition is enabled if both p_1 and p_2 are present. $p_1 \lor p_2$ Transition is enabled if either p_1 or p_2 is present. $p_1 \land \neg p_2$ Transition is enabled if p_1 is present and p_2 is absent.

Guards for Signals

 p_3 Transition is enabled if p_3 is present (not absent). $p_3 = 1$ Transition is enabled if p_3 is present and has value 1. $p_3 = 1 \land p_1$ Transition is enabled if p_3 has value 1 and p_1 is present. $p_3 > 5$ Transition is enabled if p_3 is present with value greater than 5.

Garage Counter FSM

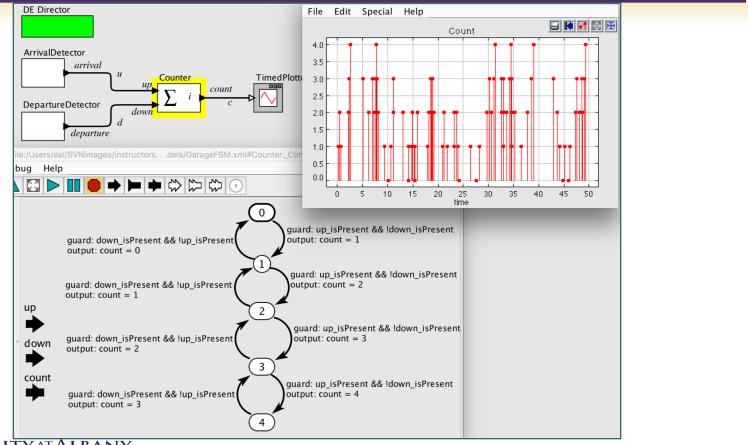


which means

$$g = \{\{up\}\}$$

Inputs(up) = present and Inputs(down) = absent

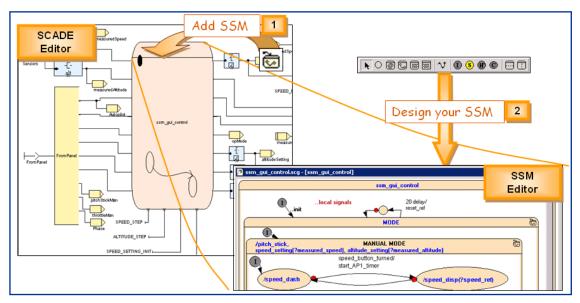
Ptolemy II Model



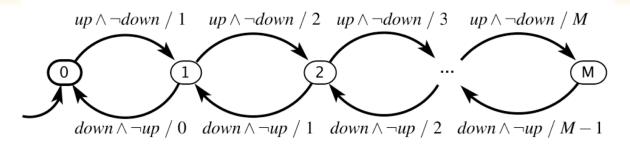
State University of New York

FSM Modeling Languages / Frameworks

- LabVIEW Statecharts
- Simulink Stateflow
- Scade



Garage Counter Mathematical Model



Formally: (States, Inputs, Outputs, update, initialState), where

- *States* = $\{0, 1, \dots, M\}$
- *Inputs* = $({up, down} \rightarrow {absent, present})$
- *Outputs* = $({count} \rightarrow {absent} \cup \mathbb{N})$
- update : States × Inputs → States × Outputs
- initialState = 0

The update function is given by

$$update(s,i) = \begin{cases} (s+1,s+1) & \text{if } s < M \\ & \wedge i(up) = present \\ & \wedge i(down) = absent \\ (s-1,s-1) & \text{if } s > 0 \\ & & \wedge i(up) = absent \\ & & \wedge i(down) = present \\ & & (s,absent) & \text{otherwise} \end{cases}$$

|(s(n+1), y(n)) = update(s(n), x(n))|

Transition Function

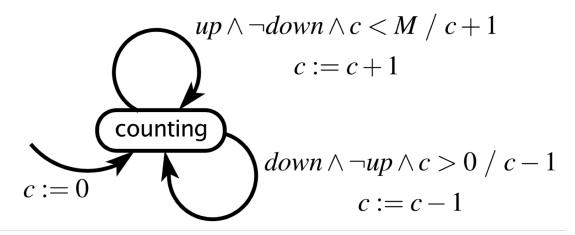
FSM: Definitions

- Stuttering: (possibly implicit) default transition that is enabled
 - when inputs are absent it does not change state and produces absent outputs.
- Deterministic (given the same inputs it will always produce the same outputs)
 - if, for each state, there is at most one transition enabled by each input value.
 - formal definition of an FSM ensures that it is deterministic, since *update* is a function.
- Receptive (ensures that a state machine is always ready to react to any input, and does not "get stuck" in any state)
 - if, for each state, there is at least one transition possible on each input symbol.
 - formal definition of an FSM ensures that it is receptive, since *update* is a function, not a partial function.

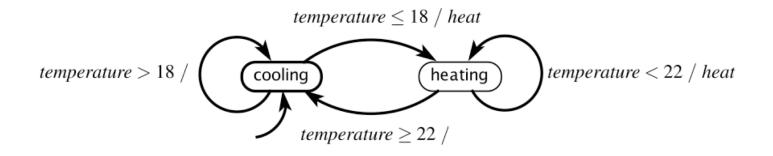
Extended State Machine

 \succ augments the FSM model with *variables* that may be read and written as part of taking a transition between states

variable: $c: \{0, \dots, M\}$ inputs: up, down: pure output: count: $\{0, \dots, M\}$



Example of Thermostat



When does a reaction occur?

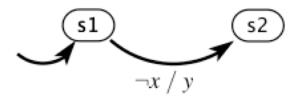
Suppose all inputs are discrete and a reaction occurs when any input is present. Then the below transition will be taken whenever the current state is s1 and x is present.

> This is an *event* input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$

When does a reaction occur?

Suppose x and y are discrete and pure signals. When does the transition occur?

input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$



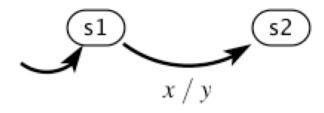
Answer: when the *environment* triggers a reaction and x is absent. If this is a (complete) event-triggered model, then the transition will never be taken because the reaction will only occur when x is present!

When does a reaction occur?

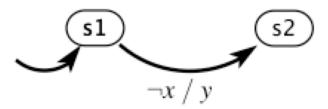
Suppose all inputs are discrete and a reaction occurs on the tick of an external clock.

> This is a *time-triggered model*.

input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$

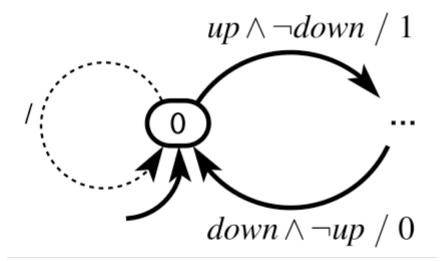


input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$



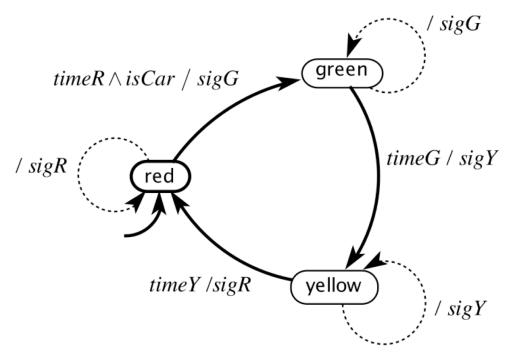
More Notation: Default Transitions

A default transition is enabled if it either has no guard or the guard evaluates to true. When is the below default transition enabled?

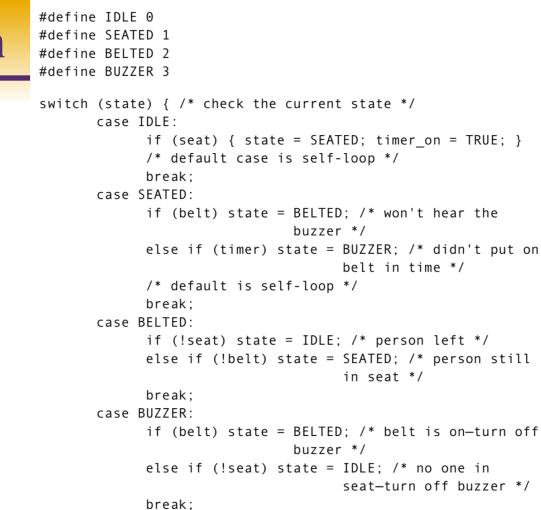


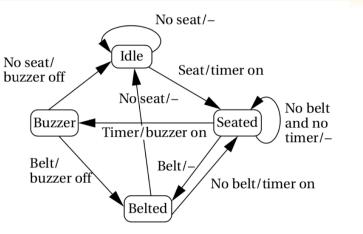
Default Transitions

> Example: Traffic Light Controller



FSM to Program





```
KINIVERSITYAT ALBANY
State University of New York
```