# **Cyber-Physical Systems**



# **Discrete Dynamics**

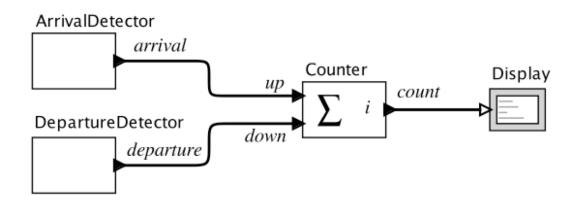
## IECE 553/453– Fall 2021

#### Prof. Dola Saha



- Discrete = "individually separate / distinct"
- A discrete system is one that operates in a sequence of discrete *steps* or has signals taking discrete *values*.
- > It is said to have **discrete dynamics**.

A discrete event occurs at an instant of time rather than over time.




#### **Discrete Systems: Example**

Count the number of cars that are present in a parking garage by sensing cars enter and leave the garage. Show this count on a display.

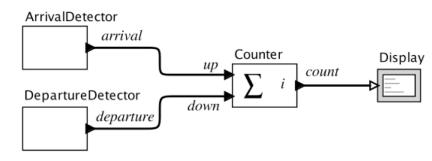


Example: count the number of cars in a parking garage by sensing those that enter and leave:





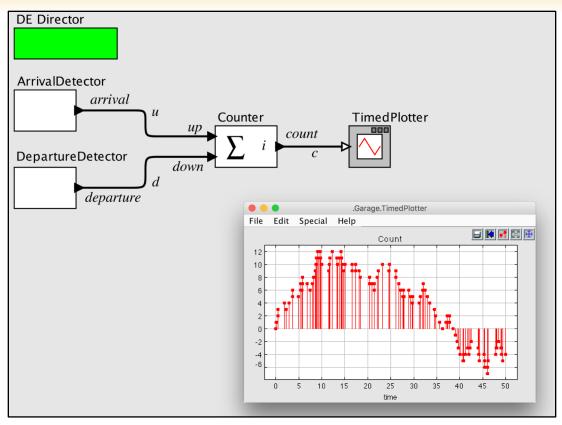
Example: count the number of cars that enter and leave a parking garage:
ArrivalDetector
up Counter count
Display


DepartureDetector

departure

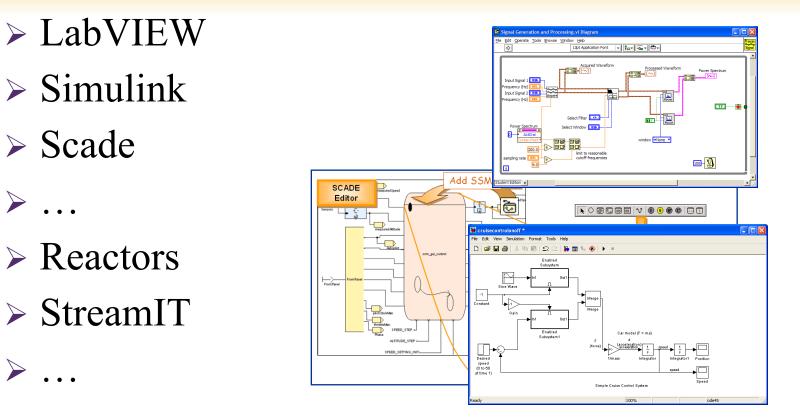
down

- ▶ Pure signal:  $up: \mathbb{R} \to \{absent, present\}$ 
  - Carries no value, information is being present or absent
- > at any time  $t \in R$ , the input up(t) is
  - either *absent*, meaning that there is no event at that time,
- or *present*, meaning that there is.
   UNIVERSITY AT ALBANY
   State University of New York


#### Example: count the number of cars that enter and leave a parking garage:



 Pure signal:  $up: \mathbb{R} \to \{absent, present\}$  Discrete actor: Counter:  $(\mathbb{R} \to \{absent, present\})^P \to (\mathbb{R} \to \{absent\} \cup \mathbb{N})$  $P = \{up, down\}$ 

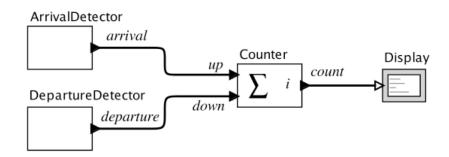



#### **Demonstration of Ptolemy II Model**





#### **Actor Modeling Languages**





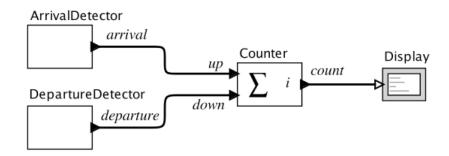

For any  $t \in \mathbb{R}$  where  $up(t) \neq absent$  or  $down(t) \neq absent$  the Counter **reacts**. It produces an output value in  $\mathbb{N}$  and changes its internal **state**.

State: condition of the system at a particular point in time

• Encodes everything about the past that influences the system's reaction to current input






#### **Inputs and Outputs at a Reaction**

For  $t \in \mathbb{R}$  the inputs are in a set

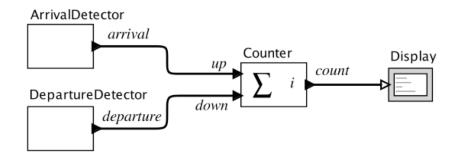
$$Inputs = (\{up, down\} \rightarrow \{absent, present\})$$

and the outputs are in a set

$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}) ,$$





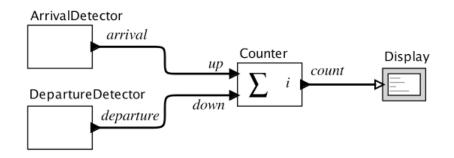



## What are some scenarios that the given parking garage (interface) design does not handle well? For t ∈ R the inputs are in a set

*Inputs* = ({up, down}  $\rightarrow$  {absent, present})

and the outputs are in a set

$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}),$$






#### **State Space**

A practical parking garage has a finite number *M* of spaces, so the state space for the counter is

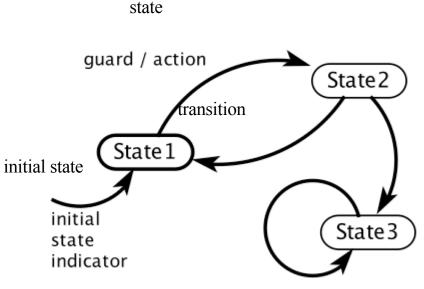
*States* = 
$$\{0, 1, 2, \cdots, M\}$$
.





#### **Finite State Machine (FSM)**

- A state machine is a model of a system with discrete dynamics
  - at each reaction maps inputs to outputs
  - Map may depend on current state
- An FSM is a state machine where the set *States* is finite. *States* = {State1, State2, State3}




#### **FSM Notation**

Input declarations, Output declarations, Extended state declarations

The guard determines whether the transition may be taken on a reaction.

The action specifies what outputs are produced on each reaction.



self loop or self transition



#### **Examples of Guards for Pure Signals**

trueTransition is always enabled. $p_1$ Transition is enabled if  $p_1$  is present. $\neg p_1$ Transition is enabled if  $p_1$  is absent. $p_1 \land p_2$ Transition is enabled if both  $p_1$  and  $p_2$  are present. $p_1 \lor p_2$ Transition is enabled if either  $p_1$  or  $p_2$  is present. $p_1 \land \neg p_2$ Transition is enabled if  $p_1$  is present and  $p_2$  is absent.



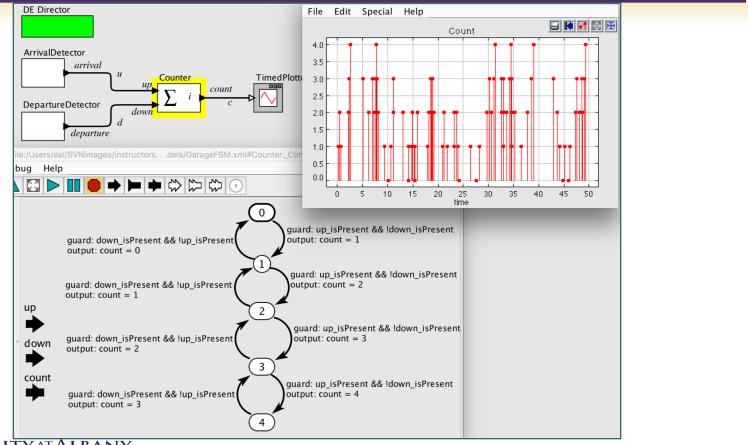

#### **Guards for Signals**

 $p_3$ Transition is enabled if  $p_3$  is present (not absent). $p_3 = 1$ Transition is enabled if  $p_3$  is present and has value 1. $p_3 = 1 \land p_1$ Transition is enabled if  $p_3$  has value 1 and  $p_1$  is present. $p_3 > 5$ Transition is enabled if  $p_3$  is present with value greater than 5.



#### **Garage Counter FSM**



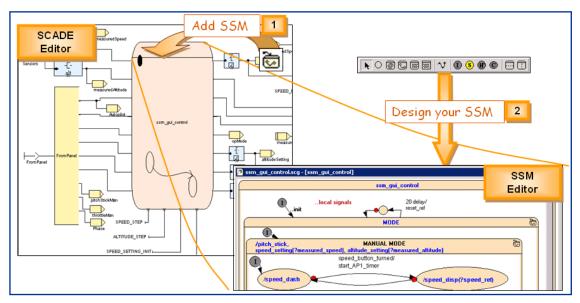

which means

$$g = \{\{up\}\}$$

Inputs(up) = present and Inputs(down) = absent

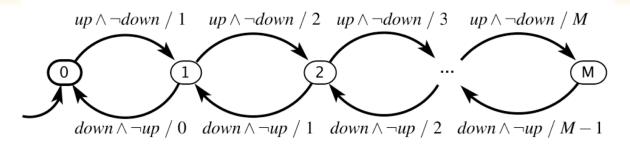


#### **Ptolemy II Model**




State University of New York

#### **FSM Modeling Languages / Frameworks**


- LabVIEW Statecharts
- Simulink Stateflow
- Scade







#### **Garage Counter Mathematical Model**



Formally: (States, Inputs, Outputs, update, initialState), where

- *States* =  $\{0, 1, \dots, M\}$
- *Inputs* =  $({up, down} \rightarrow {absent, present})$
- *Outputs* =  $({count} \rightarrow {absent} \cup \mathbb{N})$
- update : States × Inputs → States × Outputs
- initialState = 0



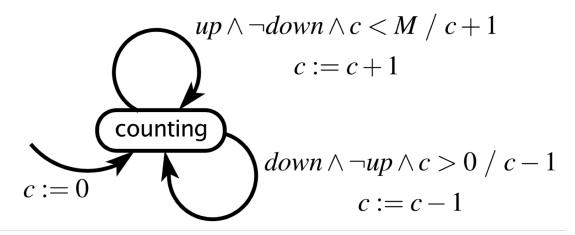
The update function is given by

$$update(s,i) = \begin{cases} (s+1,s+1) & \text{if } s < M \\ & \wedge i(up) = present \\ & \wedge i(down) = absent \\ (s-1,s-1) & \text{if } s > 0 \\ & & \wedge i(up) = absent \\ & & \wedge i(down) = present \\ & & (s,absent) & \text{otherwise} \end{cases}$$

|(s(n+1), y(n)) = update(s(n), x(n))|

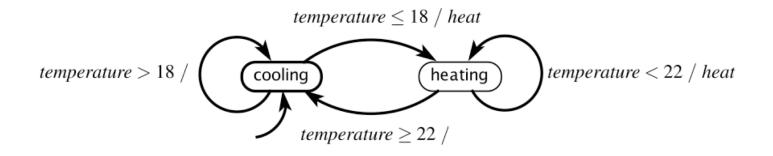
Transition Function

#### **FSM: Definitions**


- Stuttering: (possibly implicit) default transition that is enabled
  - when inputs are absent it does not change state and produces absent outputs.
- Deterministic (given the same inputs it will always produce the same outputs)
  - if, for each state, there is at most one transition enabled by each input value.
  - formal definition of an FSM ensures that it is deterministic, since *update* is a function.
- Receptive (ensures that a state machine is always ready to react to any input, and does not "get stuck" in any state)
  - if, for each state, there is at least one transition possible on each input symbol.
  - formal definition of an FSM ensures that it is receptive, since *update* is a function, not a partial function.



#### **Extended State Machine**


 $\succ$  augments the FSM model with *variables* that may be read and written as part of taking a transition between states

variable:  $c: \{0, \dots, M\}$ inputs: up, down: pure output: count:  $\{0, \dots, M\}$ 





#### **Example of Thermostat**

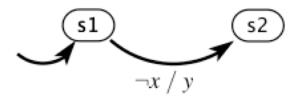




#### When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs when any input is present. Then the below transition will be taken whenever the current state is s1 and x is present.

> This is an *event* input:  $x \in \{present, absent\}$ output:  $y \in \{present, absent\}$ 





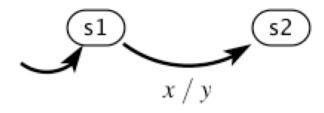

#### When does a reaction occur?

# Suppose x and y are discrete and pure signals. When does the transition occur?

input:  $x \in \{present, absent\}$ output:  $y \in \{present, absent\}$ 

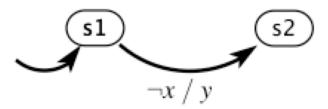


Answer: when the *environment* triggers a reaction and x is absent. If this is a (complete) event-triggered model, then the transition will never be taken because the reaction will only occur when x is present!



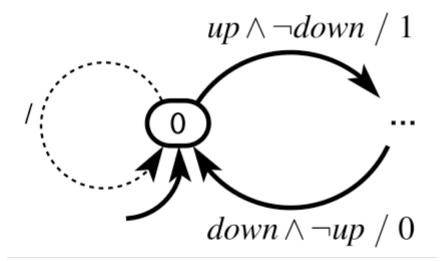

#### When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs on the tick of an external clock.


#### > This is a *time-triggered model*.

input:  $x \in \{present, absent\}$ output:  $y \in \{present, absent\}$ 

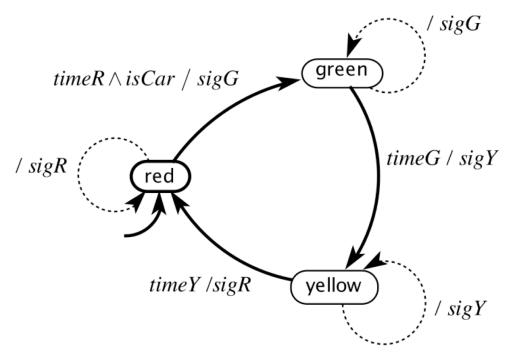





input:  $x \in \{present, absent\}$ output:  $y \in \{present, absent\}$ 

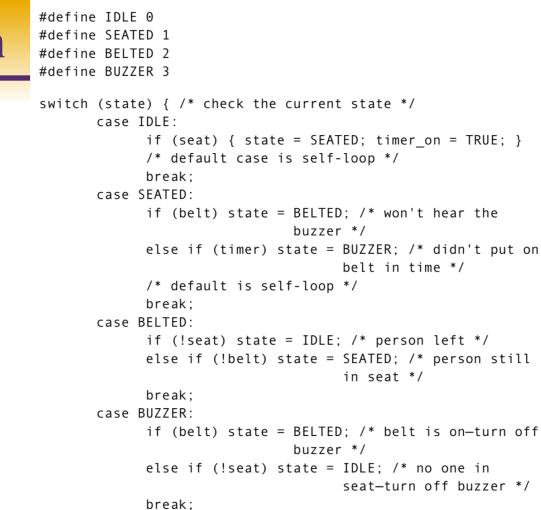


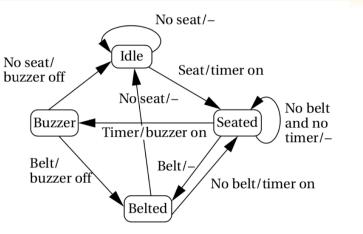
#### **More Notation: Default Transitions**


A default transition is enabled if it either has no guard or the guard evaluates to true. When is the below default transition enabled?






#### **Default Transitions**


#### > Example: Traffic Light Controller





#### **FSM to Program**





```
KINIVERSITYAT ALBANY
State University of New York
```