Cyber-Physical Systems

Introduction

IECE 553/453– Fall 2021 Prof. Dola Saha

FIOL. DOIA SAII UNIVERSITY AT ALBANY

State University of New York

1

Introductions

- Instructor
 - Prof. Dola Saha, PhD University of Colorado Boulder
 - http://www.albany.edu/faculty/dsaha/
 - https://www.albany.edu/wwwres/facultyresearch/mesalabs/
 - dsaha@albany.edu
- > Teaching Assistant
 - Xue Wei
 - xwei4@albany.edu
- Students (Identify your areas of interest)
 - Communications & Networking, Signal & Information Processing, Computer Engineering, Electronic Circuits & Systems

Information

- Course Website:
 - https://www.albany.edu/faculty/dsaha/teach/2021Fall_ECE553/2021Fall_EC E553.html
- Blackboard:
 - https://blackboard.albany.edu/

Course Website	Blackboard
Lecture Slides	Lab Assignments / Pre-Lab
Class Calendar / Schedule	Homework Assignments / Submission / Solution
Other Information	Announcements
	Grades

Office Hours

Instructor

Online: Zoom Link posted in Blackboard

Tuesday - 9:30-10:30am

 $Thursday-9{:}30{\textbf -}10{:}30am$

By appointment

Fall Back Plan for Online Mode

- Zoom link posted in Blackboard
 - For Lecture delivery
 - For Laboratory
 - Show your circuits using your camera

- > Programming at the Hardware Software Interface
- > Signals & Systems
- > The students are expected to be comfortable in
 - Unix/Linux environment
 - Circuits

Textbooks

- > Required:
 - Edward A. Lee and Sanjit A. Seshia, "Introduction to Embedded Systems, A Cyber-Physical Systems Approach", Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017, <u>available for download</u> [http://leeseshia.org/]

> Highly Recommended:

 Derek Molloy, "Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux", Wiley, ISBN 978-1-119-18868-1, 2016.

> Reference:

- Rajeev Alur, "Principles of Cyber-Physical Systems", MIT Press
- Danda B. Rawat, Joel J.P.C. Rodrigues, Ivan Stojmenovic, "Cyber-Physical Systems: From Theory to Practice", CRC Press

Slides in this course will be taken from these books. UNIVERSITY AT ALBANY State University of New York

Assignments & Grading

Assignments

- No late assignments will be accepted.
- All assignments are due by 11:59PM on the due date in Blackboard.
- Re-grading requests will be considered for up to 5 business days after posting the grades for the corresponding assignment.

Grading

- Labs (Pre and post-completion) 10%
- Homeworks 15%
- Midterm 25%
- Final Exam 25%
- Project Proposal 2%
- Midterm Project Assessment 8%
- Final Project 15%
- [Model: 20%, Design 20%, Analysis 20%, Written Report 20%, Final Presentation 20%]

State University of New York

Components

- > About 4-6 homeworks
- > Weekly Lab Assignments
- > Midterm Written, closed book
- Final Written, closed book
 - **Dec 14: 1:00PM-3:00PM**
- > Project (details in later slides)

Lab

> Hardware:

- Loan Raspberry Pi Kit
- Purchase Sensor Kit (Adeept or Amazon)
- Use Lab Manual to setup Headless Raspberry Pi

Software:

- Bash script, Python and C/C++
- Raspberry Pi OS

2017 Embedded Markets Study Language used in embedded projects eetimes

Share Phone Screen

- > To show the circuit design, share phone screen
 - iPhone user (Share through Zoom)

Android user (use DroidCam)

Required only as a fallback plan if the University needs to move completely online UNIVERSITY AT ALBANY State University of New York

Lab and Lab Assignment

Setup your phone to show the circuit before the lab begins View in Zoom

Project

- > This is not a research project
- Expected to use model, design and analysis (not just design)
- Discuss with instructor for technical plan with realistic timelines

Project Hardware

> Set of components from your lab kit

Project Ideas

- <u>https://www.raspberrypi.org/magpi/</u>
- https://blog.adafruit.com/category/raspberry-pi/

Project Samples

- Project Report
 - https://www.albany.edu/faculty/dsaha/teach/2020Fall_ECE55 3/resources/sample_project_report.pdf
- > Project Presentation
 - https://www.albany.edu/faculty/dsaha/teach/2020Fall_ECE55 3/resources/sample_project_ppt.pdf

Grading Scale

- > A: 100-95 points A-: 94-90 points
- > B+: 89-87 points B: 86-84 points B-: 83-80 points

- > C+: 79-77 points C: 76-73 points C-: 72-70 points
- > D+: 69-67 points D: 66-63 points D-: 62-60 points
- > E: 59 points and below

Difference between 453 and 553

- Extra /different problems in homework
- Extra /different problems in lab
- Extra /different problems in midterm
- Extra /different problems in finals

Academic Integrity

- Standards of Academic Integrity
 - <u>https://www.albany.edu/studentconduct/27179.php</u>
- Academic Dishonesty
 - Plagiarism, Cheating on examinations, unauthorized collaboration, etc.
- Practicing Academic Integrity
 - Citation
- Penalties for Violation
 - Zero in the assignment, lowering grade, failing grade, VAIR will be submitted
 - You can appeal to the department committee

What is Plagiarism?

- > Getting help from the Internet and not cite it
- > Asking someone else to write the code for you
- Copying your friend's code both the students are involved in plagiarism

Mask is required for both lecture and lab sessions throughout the semester

- > No water or food in class
- > No use of phones or laptops in class
- Computers will be used ONLY during lab session
- > No crosstalk
- > Attendance is not mandatory

Why this course?

Hype Cycle

Hype Cycle 2018

The term "cyber-physical systems" emerged in 2006, coined by Helen Gill at the National Science Foundation in the US.

NSF's Definition of CPS

- Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the *seamless integration* of computation and physical components.
- Advances in CPS will *enable* capability, adaptability, scalability, resiliency, safety, security, and usability that will expand the horizons of these critical systems.
- CPS technologies are *transforming the way people interact* with engineered systems, just as the Internet has transformed the way people interact with information.

Application Domains – major societal impact

Agriculture, Aeronautics, Building design, Civil infrastructure, energy, environmental quality, healthcare and personalized medicine, Manufacturing, and transportation.

CPS

- Cyber + Physical
- Computation +
 Dynamics +
 Communication
- Security + Safety

monitoring

Automotive

Contradictions in CPS

- > Adaptability vs. Repeatability
- > High connectivity vs. Security and Privacy
- > High performance vs. Low Energy
- > Asynchrony vs. Coordination/Cooperation
- Scalability vs. Reliability and Predictability
- Laws and Regulations vs. Technical Possibilities
- Economies of scale (cloud) vs. Locality (fog)
- > Open vs. Proprietary
- > Algorithms vs. Dynamics

Challenges of Working in a Multidisciplinary Area

Challenges of Working in a Multidisciplinary Area

State University of New York

Automotive CPS

- Safer Transportation
- > Reduced Emissions
- Smart Transportation
- Energy Efficiency
- Climate Change
- > Human-Robot Collaboration

Example CPS System

STARMAC Quadrotor Aircraft

STARMAC Design Block

What is this course about?

- A scientific structured approach to designing and implementing embedded systems
- Not just hacking and implementing
- Focus on model-based system design, on embedded hardware and software

Model, Design & Analysis

>*Modeling* is the process of gaining a deeper understanding of a system through imitation. Models specify **what** a system does.

>**Design** is the structured creation of artifacts. It specifies how a system does what it does. This includes optimization.

>*Analysis* is the process of gaining a deeper understanding of a system through dissection. It specifies why a system does what it does (or fails to do what a model says it should do).

