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End-to-end Protocols
Ø Common properties that a transport protocol can be expected to 

provide
§ Guarantees message delivery
§ Delivers messages in the same order they were sent 
§ Delivers at most one copy of each message
§ Supports arbitrarily large messages
§ Supports synchronization between the sender and the receiver
§ Allows the receiver to apply flow control to the sender
§ Supports multiple application processes on each host
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End-to-end Protocols
Ø Typical limitations of the network on which transport protocol will 

operate
§ Drop messages
§ Reorder messages
§ Deliver duplicate copies of a given message
§ Limit messages to some finite size
§ Deliver messages after an arbitrarily long delay
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End-to-end Protocols
Ø Challenge for Transport Protocols
§ Develop algorithms that turn the less-than-desirable properties of the underlying 

network into the high level of service required by application programs
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Transport services & protocols
Ø provide logical communication between app 

processes running on different hosts
Ø transport protocols run in end systems 
§ send side: breaks app messages into segments, passes to  

network layer
§ rcv side: reassembles segments into messages, passes to app 

layer

Ø more than one transport protocol available to 
apps

§ Internet: TCP and UDP

application
transport
network
data link
physical

logical end-end transport
application
transport
network
data link
physical
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Internet transport-layer protocols
§ reliable, in-order delivery (TCP)
• congestion control 
• flow control
• connection setup

§ unreliable, unordered delivery: 
UDP

• no-frills extension of “best-effort” IP

§ services not available: 
• delay guarantees
• bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

logical end-end transport
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Transport Layer Segmentation
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Multiplexing / Demultiplexing
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Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical
link
network

P2P1

transport

application

physical
link
network

P4
transport

application

physical
link
network

P3
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How demultiplexing works
§ host receives IP datagrams
• each datagram has source IP address, 

destination IP address
• each datagram carries one transport-layer 

segment
• each segment has source, destination port 

number 

§ host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 
(payload)

other header fields

TCP/UDP segment format
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Connectionless demultiplexing
§ recall: created socket has 

host-local port #:
serverSocket.bind(('', serverPort))

§ when host receives UDP 
segment:

• checks destination port # in 
segment

• directs UDP segment to socket 
with that port #

§ recall: when creating datagram to 
send into UDP socket, must specify
• destination IP address
• destination port #

IP datagrams with same dest. port #, but 
different source IP addresses and/or 
source port numbers will be directed to 
same socket at dest
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Connectionless demux: example

serverSocket.bind(('', (6428))

transport

application

physical
link
network

P3
transport

application

physical
link
network

P1

transport

application

physical
link
network

P4

clientSocket.bind(('', 5775))clientSocket.bind(('', 9157))

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?
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Connection-oriented demux
§ TCP socket identified by 

4-tuple: 
• source IP address
• source port number
• dest IP address
• dest port number

§ demux: receiver uses all 
four values to direct 
segment to appropriate 
socket

§ server host may support 
many simultaneous TCP 
sockets:

• each socket identified by its own 
4-tuple

§ web servers have 
different sockets for 
each connecting client

• non-persistent HTTP will have 
different socket for each request
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Connection-oriented demux: example

transport

application

physical
link
network

P3
transport

application

physical
link

P4

transport

application

physical
link
network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP 
address A

host: IP 
address C

network

P6P5
P3

source IP,port: C,5775
dest IP, port: B,80

source IP,port: C,9157
dest IP, port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP 
address B
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Connection-oriented demux: example

transport

application

physical
link
network

P3
transport

application

physical
link

transport

application

physical
link
network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP 
address A

host: IP 
address C

server: IP 
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server
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Connectionless Transport: UDP
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Ø UDP use:
§ streaming multimedia apps (loss 

tolerant, rate sensitive)
§ DNS
§ SNMP

Ø reliable transfer over UDP: 
§ add reliability at application layer
§ application-specific error recovery!

UDP: User Datagram Protocol [RFC 768]
Ø “no frills,” “bare bones”

Internet transport protocol
Ø “best effort” service, UDP 

segments may be:
• lost
• delivered out-of-order to app

Ø connectionless:
• no handshaking between UDP sender, 

receiver
• each UDP segment handled 

independently of others
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UDP: segment header

§ no connection establishment 
(which can add delay)

§ simple: no connection state at 
sender, receiver

§ small header size
§ no congestion control: UDP can 

blast away as fast as desired

source port # dest port #

32 bits

application
data 
(payload)

UDP segment format

length checksum

length, in bytes of UDP 
segment, including header

why is there a UDP?
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UDP checksum [RFC 1071]

sender:
§ treat segment contents, including header 

fields,  as sequence of 16-bit integers
§ checksum: addition (one’s complement 

sum) of segment contents
§ sender puts checksum value into UDP 

checksum field

receiver:
§ compute checksum of received 

segment
§ check if computed checksum 

equals checksum field value:
§ NO - error detected
§ YES - no error detected. But 

maybe errors nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted segment
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Internet checksum: example
example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result
The 1s complement is obtained by converting all the 
0s to 1s and converting all the 1s to 0s. 
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Checksum at Receiver
Ø At the receiver, all 16-bit words are added, 

including the checksum. 
Ø If no errors are introduced into the packet, then 

the sum at the receiver will be all ones 
(1111111111111111). 

Ø If one of the bits is a 0, then we know that errors 
have been introduced into the packet. 
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Why is Checksum required at UDP?
Ø There is no guarantee that all the links between 

source and destination provide error checking
§ One of the links may use a link-layer protocol that does not 

provide error checking

Ø It’s possible that bit errors could be introduced 
when a segment is stored in a router’s memory



23

Principles of Reliable Data Transfer (rdt)
rdt is NOT a protocol
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Principles of reliable data transfer
§ important in application, transport, link layers

§ characteristics of unreliable channel will determine complexity 
of reliable data transfer protocol (rdt)
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Principles of reliable data transfer
§ important in application, transport, link layers

§ characteristics of unreliable channel will determine complexity 
of reliable data transfer protocol (rdt)



26

Principles of reliable data transfer
§ important in application, transport, link layers

§ characteristics of unreliable channel will determine complexity 
of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, (e.g., 
by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 
unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by rdt to 
deliver data to upper
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Reliable data transfer: getting started
we’ll:
§ incrementally develop sender, receiver sides of reliable data 

transfer protocol (rdt)
§ consider only unidirectional data transfer
• but control info will flow on both directions!

§ use finite state machines (FSM)  to specify sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely 
determined by next 

event
event
actions
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rdt1.0: reliable transfer over a reliable channel

§ underlying channel perfectly reliable
• no bit errors
• no loss of packets

§ separate FSMs for sender, receiver:
• sender sends data into underlying channel
• receiver reads data from underlying channel

Wait for call 
from above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for call 
from below

rdt_rcv(packet)

sender receiver
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rdt2.0: channel with bit errors
§ underlying channel may flip bits in packet
• checksum to detect bit errors

§ the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK
• negative acknowledgements (NAKs): receiver explicitly tells sender that 

pkt had errors
• sender retransmits pkt on receipt of NAK

§ new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• receiver feedback: control msgs (ACK,NAK) rcvr->sender

How do humans recover from “errors”during conversation?
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rdt2.0: channel with bit errors
§ underlying channel may flip bits in packet
• checksum to detect bit errors

§ the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK
• negative acknowledgements (NAKs): receiver explicitly tells sender that 

pkt had errors
• sender retransmits pkt on receipt of NAK

§ new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• feedback: control msgs (ACK,NAK) from receiver to sender
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rdt2.0: FSM specification

Wait for 
call from 
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)Wait for ACK 

or NAK

Wait for call 
from belowsender

receiver
rdt_send(data)

L
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rdt2.0: operation with no errors

Wait for call 
from above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for ACK 
or NAK

Wait for call 
from below

rdt_send(data)

L
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rdt2.0: error scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)Wait for 

ACK or 
NAK

Wait for 
call from 
below

rdt_send(data)

L
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rdt2.0 has a fatal flaw!
what happens if ACK/NAK 

corrupted?
§ sender doesn’t know what happened at 

receiver!
§ can’t just retransmit: possible 

duplicate

handling duplicates: 
§ sender retransmits current pkt if 

ACK/NAK corrupted
§ sender adds sequence number to each 

pkt
§ receiver discards (doesn’t deliver up) 

duplicate pkt

stop and wait
sender sends one packet, 
then waits for receiver 
response
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rdt2.1: sender, handles garbled ACK/NAKs

Wait for call 
0 from 
above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for ACK 
or NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt)

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

LL
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rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 
0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for 
1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)
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rdt2.1: discussion
sender:
§ seq # added to pkt

§ must check if received 
ACK/NAK corrupted 

§ twice as many states
• state must “remember” whether 
“expected” pkt should have seq # of 0 
or 1 

receiver:
§ must check if received 

packet is duplicate
• state indicates whether 0 or 1 is 

expected pkt seq #

§ note: receiver can not know 
if its last ACK/NAK 
received OK at sender
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rdt2.2: a NAK-free protocol
§ same functionality as rdt2.1, using ACKs only

§ instead of NAK, receiver sends ACK for last pkt
received OK
• receiver must explicitly include seq # of pkt being ACKed

§ duplicate ACK at sender results in same action as 
NAK: retransmit current pkt
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rdt2.2: sender, receiver fragments

Wait for 
call 0 from 
above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Wait for 
ACK 0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait 
for 
0 from 
below

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L
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rdt3.0: channels with errors and loss
new assumption: underlying channel 

can also lose packets (data, 
ACKs)

Ø checksum, seq. #, ACKs, 
retransmissions will be of help … 
but not enough

approach: sender waits “reasonable”
amount of time for ACK 

Ø retransmits if no ACK received in 
this time

Ø if pkt (or ACK) just delayed (not 
lost):

Ø retransmission will be  duplicate, 
but seq. #’s already handles this

Ø receiver must specify seq # of pkt
being ACKed

Ø requires countdown timer
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rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 
ACK0

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 
call 1 from 
above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0from 
above

Wait 
for 
ACK1

L
rdt_rcv(rcvpkt)

L
L

L



43

rdt3.0 in action
sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack
0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1
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rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt
1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack
0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt
1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack
0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)
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Performance of rdt3.0
§ rdt3.0 is correct, but performance stinks
§ e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit 

packet:
§ U sender: utilization – fraction of time sender busy sending

 

U 
sender = 

.008 
30.008 

= 0.00027  L / R 
RTT + L / R 

= 

§ if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec throughput 
over 1 Gbps link

§ network protocol limits use of physical resources!

Dtrans = L
R

8000 bits
109 bits/sec= = 8 microsecs
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

 

U 
sender = 

.008 
30.008 

= 0.00027  L / R 
RTT + L / R 

= 
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Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-be-

acknowledged pkts
• range of sequence numbers must be increased
• buffering at sender and/or receiver

two generic forms of pipelined protocols: go-Back-N, selective repeat
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Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

 

U 
sender = 

.0024 
30.008 

= 0.00081  3L / R 
RTT + L / R 

= 
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Pipelined protocols: overview
Go-back-N:
§ sender can have up to N 

unacked packets in 
pipeline

§ receiver only sends 
cumulative ack

• doesn’t ack packet if there’s a gap
§ sender has a timer for 

oldest unacked packet
• when timer expires, retransmit all

unacked packets

Selective Repeat:
§ sender can have up to N 

unack’ed packets in 
pipeline

§ rcvr sends individual 
ack for each packet

§ sender maintains 
multiple timers, one for 
each unacked packet

• when timer expires, retransmit 
only that unacked packet
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Go-Back-N: sender
§ k-bit seq # in pkt header
§ “window” of up to N, consecutive unack’ed pkts allowed

§ ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
• may receive duplicate ACKs (see receiver)

§ timer for oldest in-flight pkt
§ timeout(n): retransmit packet n and all higher seq # pkts in window
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Go-Back-N (events and actions)
sender

pkt n contains expectedSequenceNo
§ send ACK(n)
pkt n does not contain 

expectedSequenceNo
§ ACK(n)
§ out-of-order: buffer

receiver
data from above:
§ if the window is not full, packet is 

created and sent
timeout(n):
§ resends all packets that have been 

sent but not yet been acknowledged 
Received ACK(n):
§ mark all pkts up to n as received
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GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt) 
&& corrupt(rcvpkt)

L
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GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with highest in-
order seq #

• may generate duplicate ACKs
• need to only remember expectedseqnum

§ out-of-order pkt: 
• discard (don’t buffer): no receiver buffering!
• re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =    
make_pkt(expectedseqnum,ACK,chksum)

L
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GBN in action
send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard, 
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

receive pkt4, discard, 
(re)send ack1

receive pkt5, discard, 
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK (ack1)

0  1  2  3  4 5 6 7 8 

sender window (N=4)

0  1  2  3  4 5 6 7 8 
0  1  2  3  4 5 6 7 8 
0  1  2  3  4 5 6 7 8 

0  1  2  3  4 5  6 7 8 
0  1 2  3  4  5 6 7 8 

0 1 2  3  4  5 6 7 8 
0 1 2  3  4  5 6 7 8 
0 1 2  3  4  5 6 7 8 
0 1 2  3  4  5 6 7 8 
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Selective repeat
§ receiver individually acknowledges all correctly 

received pkts
• buffers pkts, as needed, for eventual in-order delivery to upper layer

§ sender only resends pkts for which ACK not received
• sender timer for each unACKed pkt

§ sender window
• N consecutive seq #’s
• limits seq #s of sent, unACKed pkts
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Selective repeat: sender, receiver windows
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Selective repeat (events and actions)
sender

pkt n in [rcvbase, rcvbase+N-1]
§ send ACK(n)
§ out-of-order: buffer
§ in-order: deliver (also deliver buffered, 

in-order pkts), advance window to next 
not-yet-received pkt

pkt n in [rcvbase-N, rcvbase-1]
§ ACK(n)
otherwise:
§ ignore 

receiver
data from above:
§ if next available seq # in window, 

send pkt
timeout(n):
§ resend pkt n, restart timer
ACK(n) in [sendbase, sendbase+N]:
§ mark pkt n as received
§ if n is smallest unACKed pkt, 

advance window base to next 
unACKed seq # 
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Selective repeat in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer, 
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2

Xloss

receive pkt4, buffer, 
send ack4

receive pkt5, buffer, 
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0  1  2  3  4 5 6 7 8 

sender window (N=4)

0  1  2  3  4 5 6 7 8 
0  1  2  3  4 5 6 7 8 
0  1  2  3  4 5 6 7 8 

0  1  2  3  4 5  6 7 8 
0  1 2  3  4  5 6 7 8 

0  1 2  3  4  5 6 7 8 
0  1 2  3  4  5 6 7 8 
0  1 2  3  4  5 6 7 8 
0  1 2  3  4  5 6 7 8 

record ack4 arrived
record ack5 arrived

Q: what happens when ack2 arrives?
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Ø Dilemma example
§ seq #’s: 0, 1, 2, 3
§ window size=3

§ receiver sees no difference in two scenarios!
§ duplicate data accepted as new in (b)

§ Q: what relationship between seq # size and 
window size to avoid problem in (b)?

Selective repeat receiver window
(after receipt)

sender window
(after receipt)

0  1  2 3 0 1 2

0  1  2 3 0 1 2

0  1  2 3 0 1 2

pkt0
pkt1

pkt2

0  1  2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1  2  3 0 1 2

0  1 2  3  0 1 2

0  1  2  3  0  1 2X
X
X

will accept packet
with seq number 0

(b) oops!

0  1  2 3 0 1 2

0  1  2 3 0 1 2

0  1  2 3 0 1 2

pkt0
pkt1
pkt2

0  1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0  1 2 3 0 1 2

0  1 2 3 0 1 2

X

will accept packet
with seq number 0

0  1  2 3  0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!
something’s (very) wrong!
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Summary of rdt
Mechanism Use

Checksum detect bit errors 

Timer timeout/retransmit a packet when packet (or its ACK) is lost within the channel

Sequence# sequential numbering of packets of data flowing from sender to receiver, 
detects duplicates, in-order delivery

ACK Packet received correctly, has sequence numbers based on which 
retransmissions are done

NACK a packet has not been received correctly (checksum failed)

Window, 
pipelining

allows multiple packets to be transmitted but not yet acknowledged, improves 
sender utilization compared to stop-and-wait mode of operation
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Connection-oriented Transport: TCP
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TCP: Overview  RFCs: 793,1122,1323, 2018, 2581

§ full duplex data:
• bi-directional data flow in same 

connection
• MSS: maximum segment size

§ connection-oriented:
• handshaking (exchange of control 

msgs) inits sender, receiver state 
before data exchange

§ flow controlled:
• sender will not overwhelm receiver

§ point-to-point:
• one sender, one receiver

§ reliable, in-order byte steam:
• no “message boundaries”

§ pipelined:
• TCP congestion and flow control set 

window size
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TCP segment structure

source port # dest port #

32 bits

application
data 
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len

options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept
(used for flow control)

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)

Last byte of urgent data

In practice, the PSH, 
URG, and the urgent data 
pointer are not used. 

EC…
CWR: congestion 
window reduced
ECE: ECN Echo
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TCP seq. numbers, ACKs
sequence numbers:
•byte stream “number” of first byte in segment’s 
data

acknowledgements:
• seq # of next byte expected from other side
•cumulative ACK

Q: how receiver handles out-of-order 
segments
•A: TCP spec doesn’t say, - up to implementor

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not 
yet sent

not 
usable

window size
N

sender sequence number space 

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender
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TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

suppose the starting sequence numbers are 42 and 79
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TCP round trip time, timeout
Q: how to set TCP timeout 

value?
§ longer than RTT
• but RTT varies

§ too short: premature timeout, 
unnecessary retransmissions

§ too long: slow reaction to 
segment loss

Q: how to estimate RTT?
§ SampleRTT: measured time 

from segment transmission 
until ACK receipt

• ignore retransmissions

§ SampleRTT will vary, want 
estimated RTT “smoother”

• average several recent measurements, 
not just current SampleRTT
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TCP round trip time, timeout

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T 

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
§ exponential weighted moving average
§ influence of past sample decreases exponentially fast
§ typical value: a = 0.125

RT
T 

(m
ill

is
ec

on
ds

) RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Timeout = 2*EstimatedRTT
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How to calculate SampleRTT?

Associating the ACK with (a) original transmission versus (b) retransmission
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Karn/Partridge Algorithm
Ø Do not sample RTT when retransmitting 

Ø Karn-Partridge algorithm was an improvement over the 
original approach, but it does not eliminate congestion

Ø We need to understand how timeout is related to congestion
§ If you timeout too soon, you may unnecessarily retransmit a segment which adds 

load to the network
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Karn/Partridge Algorithm
Ø Main problem with the original computation is 

that it does not take variance of Sample RTTs into 
consideration.

Ø If the variance among Sample RTTs is small
§ Then the Estimated RTT can be better trusted
§ There is no need to multiply this by 2 to compute the timeout  
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Karn/Partridge Algorithm
Ø On the other hand, a large variance in the samples 

suggest that timeout value should not be tightly 
coupled to the Estimated RTT

Ø Jacobson/Karels proposed a new scheme for TCP 
retransmission
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Jacobson/Karels Algorithm 
§ timeout interval: EstimatedRTT plus “safety margin”

§ large variation in EstimatedRTT à larger safety margin
§ estimate SampleRTT deviation from EstimatedRTT: 
§ RFC 6298

DevRTT = (1-b)*DevRTT + b*(|SampleRTT-EstimatedRTT| )

(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT

“safety margin”

Measure of variability
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TCP reliable data transfer
§ TCP creates rdt service 

on top of IP’s unreliable 
service

• pipelined segments
• cumulative acks
• single retransmission timer

§ retransmissions  
triggered by:

• timeout events
• duplicate acks

let’s initially consider 
simplified TCP sender:

• ignore duplicate acks
• ignore flow control, congestion 

control
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TCP sender events:
data rcvd from app:
§ create segment with seq #
§ seq # is byte-stream number 

of first data byte in  segment
§ start timer if not already 

running 
• think of timer as for oldest unacked

segment
• expiration interval: TimeOutInterval

timeout:
§ retransmit segment that 

caused timeout
§ restart timer
ack rcvd:
§ if ack acknowledges 

previously unacked segments
• update what is known to be ACKed
• start timer if there are  still unacked

segments
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TCP sender (simplified)

wait
for 
event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data) 
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment         
with smallest seq. #

start timer

timeout

if (y > SendBase) { 
SendBase = y 
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer 

} 

ACK received, with ACK field value y 
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TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92
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TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120
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TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap
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TCP fast retransmit
§ time-out period often relatively 

long:
• long delay before resending lost packet

§ detect lost segments via 
duplicate ACKs.
• sender often sends many segments 

back-to-back
• if segment is lost, there will likely be 

many duplicate ACKs.

if sender receives 3 
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest 
seq #
§ likely that unacked

segment lost, so don’t 
wait for timeout

TCP fast retransmit
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TCP fast retransmit

X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100
ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than TCP 
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so 
sender won’t overflow receiver’s 
buffer by transmitting too much, 
too fast

flow control
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TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

receiver-side buffering

Ø receiver “advertises” free buffer space 
by including rwnd (receiver window) 
value in TCP header of receiver-to-
sender segments

§ RcvBuffer size set via socket options (typical 
default is 4096 bytes)

§ many operating systems autoadjust RcvBuffer

Ø sender limits amount of unacked (“in-
flight”) data to receiver’s rwnd value 

Ø guarantees receive buffer will not 
overflow
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Sliding Window Protocol
Ø TCP’s variant of the sliding window algorithm, which serves 

several purposes: 
§ it guarantees the reliable delivery of data, 
§ it ensures that data is delivered in order, and 
§ it enforces flow control between the sender and the receiver.
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Sliding Window

Relationship between TCP send buffer (a) and receive buffer (b).

Byte increase Byte increase
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TCP Sliding Window
Ø Sending Side
§ LastByteAcked ≤ LastByteSent
§ LastByteSent ≤ LastByteWritten

Ø Receiving Side
§ LastByteRead < NextByteExpected
§ NextByteExpected ≤ LastByteRcvd + 1
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TCP Flow Control
Ø LastByteRcvd − LastByteRead ≤ MaxRcvBuffer
Ø AdvertisedWindow = MaxRcvBuffer − ((NextByteExpected − 1) − LastByteRead)
Ø LastByteSent − LastByteAcked ≤ AdvertisedWindow
Ø EffectiveWindow = AdvertisedWindow − (LastByteSent − LastByteAcked)
Ø LastByteWritten − LastByteAcked ≤ MaxSendBuffer
Ø If the sending process tries to write y bytes to TCP, but

(LastByteWritten − LastByteAcked) + y > MaxSendBuffer
then TCP blocks the sending process and does not allow it to generate more data.
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Protecting against Wraparound
Ø SequenceNum: 32 bits longs

Ø AdvertisedWindow: 16 bits long
§ TCP has satisfied the requirement of the sliding 

§ window algorithm that is the sequence number 

§ space be twice as big as the window size 

§ 232 >> 2 × 216
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Protecting against Wraparound
Ø Relevance of the 32-bit sequence number space
§ The sequence number used on a given connection might wraparound 

§ A byte with sequence number x could be sent at one time, and then at a  later time a 
second byte with the same sequence number x could be sent

§ Packets cannot survive in the Internet for longer than the MSL (maximum segment 
lifetime)

§ MSL is set to 120 sec [recommended RFC 793]

§ Make sure that the sequence number does not wrap around within a 120-second 
period of time

§ Depends on how fast data can be transmitted over the Internet
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Protecting against Wraparound

Time until 32-bit sequence number space wraps around.
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Keeping the Pipe Full
Ø 16-bit AdvertisedWindow field must be big enough to allow the sender 

to keep the pipe full

Ø 16-bit field translates to max 64KB advertised window 

Ø Clearly the receiver is free not to open the window as large as the 
AdvertisedWindow field allows

Ø If the receiver has enough buffer space

§ The window needs to be opened far enough to allow a full 
delay × bandwidth product’s worth of data

§ Assuming an RTT of 100 ms



91

Keeping the Pipe Full

Required window size for 100-ms RTT.
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Connection Management
before exchanging data, sender/receiver “handshake”:
§ agree to establish connection (each knowing the other willing to establish 

connection)
§ agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

Socket clientSocket =   
newSocket("hostname","port number");

Socket connectionSocket = 
welcomeSocket.accept();
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TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;

send ACK for SYNACK;
this segment may contain 

client-to-server data
received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN



94

TCP: closing a connection
Ø client, server each close their side of connection
§ send TCP segment with FIN bit = 1

Ø respond to received FIN with ACK
§ on receiving FIN, ACK can be combined with own FIN

Ø simultaneous FIN exchanges can be handled
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TCP: closing a connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB
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TCP State Transition Diagram 

Extremely simplified in this diagram
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Principles of Congestion Control
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Principles of congestion control
congestion:

§ Informally: 
§ “too many sources sending too much data too fast for network

to handle”

§ Different from flow control!
§ Manifestations:
§ lost packets (buffer overflow at routers)
§ long delays (queueing in router buffers)
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Causes/costs of congestion: scenario 1 
§ two senders, two receivers
§ one router, infinite buffers 
§ output link capacity: R
§ no retransmission

§ maximum per-connection 
throughput: R/2

unlimited shared 
output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l ou
t

lin R/2

de
la

y

lin

v large queuing delays as arrival 
rate, lin, approaches capacity



100

Causes/costs of congestion: scenario 2 
§ one router, finite buffers 
§ sender retransmission of timed-out packet
• application-layer input = application-layer output: lin = lout

• transport-layer input includes retransmissions : l’in >=lin

finite shared output 
link buffers

Host A

lin : original data

Host B

loutl'in: original data, plus
retransmitted data
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Causes/costs of congestion: scenario 2 
idealization: perfect knowledge
§ sender sends only when router buffers 

available 

finite shared output 
link buffers

lin : original data
loutl'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l ou
t

lin

Host B

Host A
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Causes/costs of congestion: scenario 2 
Idealization: known loss packets can be lost, dropped at router due  to 

full buffers
§ sender only resends if packet known to be lost

lin : original data
loutl'in: original data, plus

retransmitted data

copy

no buffer space!Host A

Host B
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Causes/costs of congestion: scenario 2 
Idealization: known loss

packets can be lost, dropped at router 
due  to full buffers

§ sender only resends if packet known to 
be lost

lin : original data
loutl'in: original data, plus

retransmitted data

free buffer space!

R/2

R/2lin

l ou
t

when sending at R/2, some 
packets are retransmissions but 
asymptotic goodput is still R/2 
(why?)

Host A

Host B
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Causes/costs of congestion: scenario 2 

Host A

lin loutl'incopy

free buffer space!

timeout

R/2

R/2lin

l ou
t

when sending at R/2, some 
packets are retransmissions 
including duplicated that are 
delivered!

Host B

Realistic: duplicates
§ packets can be lost, dropped at router due 

to full buffers
§ sender times out prematurely, sending 

two copies, both of which are delivered



105

Causes/costs of congestion: scenario 2 
R/2

l ou
t

when sending at R/2, some 
packets are retransmissions 
including duplicated that are 
delivered!

“costs” of congestion:
§ more work (retransmission) for given “goodput”
§ unneeded retransmissions: link carries multiple copies of pkt
• decreasing goodput

R/2lin

Realistic: duplicates
§ packets can be lost, dropped at router due 

to full buffers
§ sender times out prematurely, sending 

two copies, both of which are delivered
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Causes/costs of congestion: scenario 3 
§ four senders
§ multihop paths
§ timeout/retransmit

Q: what happens as lin and lin
’ increase ?

finite shared output 
link buffers

Host A lout Host B

Host 
C

Host 
D

lin : original data
l'in: original data, plus

retransmitted data

A: as red  lin
’ increases, all arriving blue 

pkts in queue are dropped, blue 
throughput goes down
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Causes/costs of congestion: scenario 3 

another “cost” of congestion:
§ when packet dropped, any “upstream” 

transmission capacity used for that packet was 
wasted!

C/2

C/2

l ou
t

lin’

Congestion in Hop 
2 for blue

Resource used by blue 
here is wasted
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Congestion Control Approaches
Ø End-to-end congestion control
§ TCP

Ø Network assisted congestion control
§ Routers provide feedback about congestion
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network-assisted congestion control:
§ two bits in IP header (ToS field) marked by network router to indicate congestion
§ congestion indication carried to receiving host
§ receiver (seeing congestion indication in IP datagram) ) sets ECE bit on receiver-to-

sender ACK segment to notify sender of congestion

Explicit Congestion Notification (ECN)

source
application
transport
network
link
physical

destination
application
transport
network
link
physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

ECE = 1 & SYN = 1: TCP is ECN capable
ECE = 1 & SYN = 0: TCP received ECN notification 
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TCP Congestion Control
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TCP Congestion Control
Ø TCP congestion control was introduced into the Internet in the late 

1980s by Van Jacobson, roughly eight years after the TCP/IP protocol 
stack had become operational.

Ø Immediately preceding this time, the Internet was suffering from 
congestion collapse—

§ hosts would send their packets into the Internet as fast as the advertised window 
would allow, congestion would occur at some router (causing packets to be 
dropped), and the hosts would time out and retransmit their packets, resulting in 
even more congestion
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Congestion Window
§ TCP maintains a new state variable for each connection, called 

CongestionWindow, which is used by the source to limit how much 
data it is allowed to have in transit at a given time. 

§ The congestion window is congestion control’s counterpart to flow 
control’s advertised window. 

§ TCP is modified such that the maximum number of bytes of 
unacknowledged data allowed is now the minimum of the congestion 
window and the advertised window
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TCP Congestion Control: details

§ sender limits transmission:

§ cwnd is dynamic, function of 
perceived network congestion

TCP sending rate:
§ roughly: send cwnd bytes, 

wait RTT for ACKS, then 
send more bytes

§ By adjusting the cwnd, the 
sender can adjust the rate at 
which it sends data into its 
connection. 

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte 
sent

cwnd

LastByteSent – LastByteAcked <= min{rwnd, cwnd}
LastByteSent – LastByteAcked <= cwnd, if receiver 

has infinite buffer

sender sequence number space 

rate ~~
cwnd
RTT

bytes/sec
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Mechanisms of Adjusting cwnd
Ø A lost segment implies congestion
§ sender’s rate should be decreased when a segment is lost

Ø ACK indicates that there is no congestion
§ sender’s rate can be increased when an ACK
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TCP congestion control
Ø Additive Increase Multiplicative Decrease 
§ approach: sender increases transmission rate (window size), probing for 

usable bandwidth, until loss occurs
• additive increase: increase  cwnd by 1 MSS every RTT until loss detected
• multiplicative decrease: cut cwnd in half after loss 

cw
nd

:T
CP

 se
nd

er
 

co
ng

es
tio

n 
w

in
do

w
 si

ze

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time
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TCP Slow Start 
§ when connection begins, increase 

rate exponentially until first loss 
event:
• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing cwnd for every ACK 

received

§ summary: initial rate is slow but 
ramps up exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments
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TCP: detecting, reacting to loss
§ loss indicated by timeout:
• cwnd set to 1 MSS; 
• window then grows exponentially (as in slow start) to threshold, then 

grows linearly

§ loss indicated by 3 duplicate ACKs: TCP RENO
• dup ACKs indicate network capable of  delivering some segments 
• cwnd is cut in half window then grows linearly

§ TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate 
acks)
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TCP: switching from slow start to CA
Q: when should the exponential increase 

switch to linear? 
A: when cwnd gets to 1/2 of its value 

before timeout.

Implementation:
§variable ssthresh
§on loss event, ssthresh is set to 1/2 of 
cwnd just before loss event
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Many TCP Variants…
Ø Tahoe: the original
§ Slow start with (Additive Increase Multiplicative Decrease) AIMD
§ Dynamic RTO based on RTT estimate

Ø Reno: 
§ fast retransmit (3 dupACKs) 
§ fast recovery (cwnd = cwnd/2 on loss)

Ø NewReno: improved fast retransmit
§ Each duplicate ACK triggers a retransmission
§ Problem: >3 out-of-order packets causes pathological retransmissions

Ø Vegas: delay-based congestion avoidance
Ø And many, many, many more…
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TCP in the Real World
Ø What are the most popular variants today?
§ Key problem: TCP performs poorly on high bandwidth-delay product 

networks (like the modern Internet)
§ Compound TCP (Windows)
o Based on Reno
o Uses two congestion windows: delay based and loss based
o Thus, it uses a compound congestion controller

§ TCP CUBIC (Linux)
o Enhancement of BIC (Binary Increase Congestion Control)
o Window size controlled by cubic function
o Parameterized by the time T since the last dropped packet
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Summary: TCP Congestion Control [TCP Reno]

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

new ACK

slow 
start

timeout
ssthresh = cwnd/2 
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

Intuition: duplicate ACK that were in pipeline
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TCP Fairness
fairness goal: if K TCP sessions share same 

bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck
router
capacity RTCP connection 2
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Why is TCP fair?
two competing sessions:
§ additive increase gives slope of 1, as throughout increases
§ multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
tio

n 
2 

th
ro

ug
hp

ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Fairness Index (Evaluation Criteria)
Ø Quantifies fairness of a congestion control 

mechanism
§ Given a set of flow throughputs (x1, x2, . . . , xn), the following 

function assigns a fairness index to the flows:

§ The fairness index always results in a number between 0 and 
1, with 1 representing greatest fairness.

𝑓 𝑥#, 𝑥%, … , 𝑥' =
(∑+,#' 𝑥+)%

𝑛 ∑+,#' 𝑥+%
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Fairness (more)
Fairness and UDP
§ multimedia apps often 

do not use TCP
• do not want rate throttled by 

congestion control

§ instead use UDP:
• send audio/video at constant rate, 

tolerate packet loss

Fairness, parallel TCP 
connections

§ application can open 
multiple parallel 
connections between 
two hosts

§ web browsers do this 
§ e.g., link of rate R with 9 

existing connections:
• new app asks for 1 TCP, gets rate R/10
• new app asks for 11 TCPs, gets R/2 
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Summary
Ø We have discussed 
§ how to convert host-to-host packet delivery service to process-to-

process communication channel.
§ UDP
§ TCP
§ Flow control
§ Congestion Control


