
1

Computer Communication
Networks

Application Layer
IECE / ICSI 416– Spring 2020
Prof. Dola Saha

2

Problem
Ø Applications need their own protocols.

Ø These applications are part network protocol (in the sense that they
exchange messages with their peers on other machines) and part
traditional application program (in the sense that they interact with the
windowing system, the file system, and ultimately, the user).

Ø We will explore some of the most popular network applications
available today.

3

Outline
Ø Traditional Applications

Ø Multimedia Applications

Ø Infrastructure Services

Ø Overlay Networks

4

Some network apps
Ø e-mail
Ø web
Ø text messaging
Ø remote login
Ø P2P file sharing
Ø multi-user network games
Ø streaming stored video

(YouTube, Hulu, Netflix)

Ø voice over IP (e.g., Skype)
Ø real-time video conferencing
Ø social networking
Ø search
Ø …
Ø …

5

Creating a network app
write programs that:
Ø run on (different) end systems
Ø communicate over network
Ø e.g., web server software communicates with browser

software

no need to write software for network-core devices
Ø network-core devices do not run user applications
Ø applications on end systems allows for rapid app

development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

6

Traditional Applications
Ø Two of the most popular—
§ The World Wide Web and
§ Email.

Ø Broadly speaking, both of these applications use the request/reply
paradigm—users send requests to servers, which then respond
accordingly.

7

Traditional Applications
Ø It is important to distinguish between application programs and

application protocols.
Ø For example, the HyperText Transport Protocol (HTTP) is an

application protocol that is used to retrieve Web pages from remote
servers.

Ø There can be many different application programs—that is, Web clients
like Internet Explorer, Chrome, Firefox, and Safari—that provide users
with a different look and feel, but all of them use the same HTTP
protocol to communicate with Web servers over the Internet.

8

Application

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

application
program

Outlook
Telnet
Firefox
FileZilla
YouTube
Cisco WebEx
Google voice
Vonage

9

Traditional Applications
Ø Two very widely-used, standardized application protocols:

§ HTTP: HyperText Transport Protocol is used to communicate
between Web browsers and Web servers.
o RFC 2616 - https://www.ietf.org/rfc/rfc2616.txt

§ SMTP: Simple Mail Transfer Protocol is used to exchange
electronic mail.
o RFC 821 - https://tools.ietf.org/rfc/rfc821.txt

https://www.ietf.org/rfc/rfc2616.txt
https://tools.ietf.org/rfc/rfc821.txt

10

Traditional Applications
Ø World Wide Web

§ The World Wide Web has been so successful and has made the Internet accessible
to so many people that sometimes it seems to be synonymous with the Internet.

§ In fact, the design of the system that became the Web started around 1989, long
after the Internet had become a widely deployed system.

§ The original goal of the Web was to find a way to organize and retrieve
information, drawing on ideas about hypertext—interlinked documents—that had
been around since at least the 1960s.

11

Traditional Applications
Ø World Wide Web

§ The core idea of hypertext is that one document can link to another document, and
the protocol (HTTP) and document language (HTML) were designed to meet that
goal.

§ One helpful way to think of the Web is as a set of cooperating clients and servers,
all of whom speak the same language: HTTP.

§ Most people are exposed to the Web through a graphical client program, or Web
browser, like Safari, Chrome, Firefox or Internet Explorer.

12

Traditional Applications
Ø World Wide Web
§ Clearly, if you want to organize information into a system of linked documents or

objects, you need to be able to retrieve one document to get started.
§ Hence, any Web browser has a function that allows the user to obtain an object by

“opening a URL.”
§ URLs (Uniform Resource Locators) are so familiar to most of us by now that it’s

easy to forget that they haven’t been around forever.
§ They provide information that allows objects on the Web to be located, and they

look like the following:
o http://www.cs.princeton.edu/index.html

www.someschool.edu/someDept/pic.gif

host name path name

13

Traditional Applications
Ø World Wide Web

§ If you opened that particular URL, your Web browser would open a TCP
connection to the Web server at a machine called www.cs.princeton.edu and
immediately retrieve and display the file called index.html.

§ Most files on the Web contain images and text and many have other objects such
as audio and video clips, pieces of code, etc.

§ They also frequently include URLs that point to other files that may be located on
other machines, which is the core of the “hypertext” part of HTTP and HTML.

14

HTTP overview
HTTP: hypertext transfer protocol

Ø Web’s application layer protocol

Ø client/server model
§client: browser that requests, receives,

(using HTTP protocol) and “displays”
Web objects

§server: Web server sends (using HTTP
protocol) objects in response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

15

Traditional Applications
Ø World Wide Web
§ When you ask your browser to view a page, your browser (the client) fetches the

page from the server using HTTP running over TCP.
§ HTTP is a text oriented protocol.
§ HTTP is a request/response protocol, where every message has the general form

START_LINE <CRLF>
MESSAGE_HEADER <CRLF>
<CRLF>
MESSAGE_BODY <CRLF>

§ <CRLF> stands for carriage-return-line-feed.
§ The first line (START LINE) indicates whether this is a request message or a

response message.

16

HTTP overview (continued)
uses TCP:
Ø client initiates TCP connection (creates socket)

to server, port 80
Ø server accepts TCP connection from client
ØHTTP messages (application-layer protocol

messages) exchanged between browser (HTTP
client) and Web server (HTTP server)

ØTCP connection closed

HTTP is “stateless”
server maintains no information
about past client requests

protocols that maintain
“state” are complex!

§ past history (state) must be
maintained

§ if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

17

Traditional Applications
Ø World Wide Web
§ Request Messages
o The first line of an HTTP request message specifies three things:
ü the operation to be performed,
ü the Web page the operation should be performed on, and
ü the version of HTTP being used.

o Although HTTP defines a wide assortment of possible request operations—
including “write” operations that allow a Web page to be posted on a server—the
two most common operations are GET (fetch the specified Web page) and HEAD
(fetch status information about the specified Web page).

18

HTTP Request Message

19

Traditional Applications
Ø World Wide Web
§ Request Messages

HTTP request operations

20

Traditional Applications
Ø World Wide Web
§ Response Messages
o Like request messages, response messages begin with a

single START LINE.
o In this case, the line specifies the version of HTTP being

used, a three-digit code indicating whether or not the request
was successful, and a text string giving the reason for the
response.

21

HTTP Result Codes
§ Response Messages

Five types of HTTP result codes

22

Uniform Resource Identifiers
Ø The URLs that HTTP uses as addresses are one type of Uniform Resource

Identifier (URI).

Ø A URI is a character string that identifies a resource, where a resource can be
anything that has identity, such as a document, an image, or a service.

Ø The format of URIs allows various more-specialized kinds of resource identifiers
to be incorporated into the URI space of identifiers.

Ø The first part of a URI is a scheme that names a particular way of identifying a
certain kind of resource, such as mailto for email addresses or file for file names.

Ø The second part of a URI, separated from the first part by a colon, is the scheme-
specific part.

23

Traditional Applications
Ø World Wide Web
§ TCP Connections
o The original version of HTTP (1.0) established a separate TCP connection for each data

item retrieved from the server.

o It’s not too hard to see how this was a very inefficient mechanism: connection setup and
teardown messages had to be exchanged between the client and server even if all the client
wanted to do was verify that it had the most recent copy of a page.

o Thus, retrieving a page that included some text and a dozen icons or other small graphics
would result in 13 separate TCP connections being established and closed.

24

Traditional Applications
Ø World Wide Web
§ TCP Connections
o To overcome this situation, HTTP version 1.1 introduced persistent

connections— the client and server can exchange multiple request/response
messages over the same TCP connection.

o Persistent connections have many advantages.
ü First, they obviously eliminate the connection setup overhead, thereby reducing the load

on the server, the load on the network caused by the additional TCP packets, and the delay
perceived by the user.

ü Second, because a client can send multiple request messages down a single TCP
connection, TCP’s congestion window mechanism is able to operate more efficiently.

§ This is because it’s not necessary to go through the slow start phase for each page.

25

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.someSchool.edu
on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates that
client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection,
notifying client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text, references to 10 jpeg images)

www.someSchool.edu/someDepartment/home.index

26

Non-persistent HTTP (cont.)

5. HTTP client receives
response message
containing html file,
displays html. Parsing
html file, finds 10
referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

27

Non-persistent HTTP: response time
RTT (definition): time for a small packet to travel from

client to server and back
HTTP response time:
Ø one RTT to initiate TCP connection
Ø one RTT for HTTP request and first few bytes of

HTTP response to return
Ø file transmission time
Ø non-persistent HTTP response time =

2RTT+ file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

28

Persistent and non-persistent HTTP
non-persistent HTTP issues:
Ørequires 2 RTTs per object
ØOS overhead for each TCP

connection
Øbrowsers often open parallel TCP

connections to fetch referenced
objects

persistent HTTP:
Øserver leaves connection open

after sending response
Øsubsequent HTTP messages

between same client/server sent
over open connection

Øclient sends requests as soon as it
encounters a referenced object

Øas little as one RTT for all the
referenced objects

29

Cookies
Ø (1) a cookie header line in the HTTP response

message;
Ø (2) a cookie header line in the HTTP request

message;
Ø (3) a cookie file kept on the user’s end system and

managed by the user’s browser; and
Ø (4) a back-end database at the Web site.

30

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678 ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

31

Cookies (continued)
what cookies can be used for:
Ø authorization
Ø shopping carts
Ø recommendations
Ø user session state (Web e-mail)

cookies and privacy:
§ cookies permit sites to

learn a lot about you
§ you may supply name

and e-mail to sites

aside

how to keep “state”:
§ protocol endpoints: maintain state at

sender/receiver over multiple
transactions

§ cookies: http messages carry state

32

Caching
Ø One of the most active areas of research (and

entrepreneurship) in the Internet today is how to effectively
cache Web pages.

Ø Caching has benefits.
§ From the client’s perspective, a page that can be retrieved from a nearby cache can

be displayed much more quickly than if it has to be fetched from across the world.

§ From the server’s perspective, having a cache intercept and satisfy a request
reduces the load on the server.

33

Caching
Ø Caching can be implemented in many different places.
§ a user’s browser can cache recently accessed pages, and simply display the cached copy if

the user visits the same page again.
§ a site can support a single site-wide cache.

Ø This allows users to take advantage of pages previously downloaded by
other users.

Ø Closer to the middle of the Internet, ISPs can cache pages.
Ø Note that in the second case, the users within the site most likely know

what machine is caching pages on behalf of the site, and they configure
their browsers to connect directly to the caching host. This node is
sometimes called a proxy

34

Web caches (proxy server)

Øuser sets browser: Web accesses
via cache

Øbrowser sends all HTTP
requests to cache
§ object in cache: cache returns

object
§ else cache requests object from

origin server, then returns object to
client

goal: satisfy client request without involving origin server

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

35

More about Web caching
Ø cache acts as both client and

server
§ server for original requesting client
§ client to origin server

Ø typically cache is installed
by ISP (university,
company, residential ISP)

why Web caching?
§ reduce response time for

client request
§ reduce traffic on an

institution’s access link
§ Internet dense with caches:

enables “poor” content
providers to effectively
deliver content

36

Caching example:

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to origin

servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any origin

server: 2 sec
§ access link rate: 1.54 Mbps
consequences:
§ LAN utilization: 15%
§ access link utilization = 99%
§ total delay = Internet delay + access delay +

LAN delay
= 2 sec + minutes + usecs

problem!

37

Caching example: fatter access link
assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to origin

servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any origin

server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 15%
§ access link utilization = 99%
§ total delay = Internet delay + access delay +

LAN delay
§ = 2 sec + minutes + usecs

origin
servers

1.54 Mbps
access link

154 Mbps
154 Mbps

msecs
Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network

1 Gbps LAN

38

institutional
network

1 Gbps LAN

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to origin servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any origin server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 15%
§ access link utilization = ?
§ total delay = Internet delay + access delay + LAN delay = ?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

39

Caching example: install local cache
Calculating access link utilization, delay with cache:
Ø suppose cache hit rate is 0.4

§ 40% requests satisfied at cache, 60% requests satisfied at origin origin
servers

1.54 Mbps
access link

Ø access link utilization:
§ 60% of requests use access link

Ø data rate to browsers over access
link
= 0.6*1.50 Mbps = .9 Mbps
§ utilization = 0.9/1.54 = .58

Ø total delay
§ = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
§ = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs
§ less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network

1 Gbps LAN

local web
cache

40

Conditional GET
Ø Goal: don’t send object if cache has up-to-

date cached version
§ no object transmission delay
§ lower link utilization

Ø cache: specify date of cached copy in HTTP
request

If-modified-since: <date>

Ø server: response contains no object if cached
copy is up-to-date:

HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

41

Electronic Mail
Ø SMTP, MIME, IMAP

§ Email is one of the oldest network applications

§ It is important
o (1) to distinguish the user interface (i.e., your mail reader) from the

underlying message transfer protocols (such as SMTP or IMAP), and
o (2) to distinguish between this transfer protocol and a companion

protocol (RFC 822 and MIME) that defines the format of the messages
being exchanged

42

Electronic Mail
Three major components:
Ø user agents
Ø mail servers
Ø simple mail transfer protocol: SMTP

User Agent
Ø a.k.a. “mail reader”
Ø composing, editing, reading mail messages
Ø e.g., Outlook, Thunderbird, iPhone mail client
Ø outgoing, incoming messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

43

Electronic Mail: servers
mail servers:
Ø mailbox contains incoming messages

for user
Ø message queue of outgoing (to be

sent) mail messages
Ø SMTP protocol between mail servers

to send email messages
§ client: sending mail server
§ “server”: receiving mail server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

44

Electronic Mail: SMTP [RFC 2821]
Ø uses TCP to reliably transfer email message from client to server, port 25
Ø direct transfer: sending server to receiving server
Ø three phases of transfer
§ handshaking (greeting)
§ transfer of messages
§ closure

Ø command/response interaction (like HTTP)
§ commands: ASCII text
§ response: status code and phrase

Ø messages must be in 7-bit ASCI

45

Scenario: Alice sends message to Bob
1) Alice uses UA to compose message “to”

bob@someschool.edu
2) Alice’s UA sends message to her mail server;

message placed in message queue
3) client side of SMTP opens TCP connection with

Bob’s mail server

4) SMTP client sends Alice’s message over
the TCP connection
5) Bob’s mail server places the message in
Bob’s mailbox
6) Bob invokes his user agent to read
message

user
agent

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server
(rutgers.edu)

Bob’s mail server
(albany.edu)

user
agent

46

SMTP: final words
Ø SMTP uses persistent connections
Ø SMTP requires message (header &

body) to be in 7-bit ASCII
Ø SMTP server uses CRLF.CRLF to

determine end of message

comparison with HTTP:
Ø HTTP: pull
Ø SMTP: push
Ø both have ASCII command/response

interaction, status codes
Ø HTTP: each object encapsulated in its

own response message
Ø SMTP: multiple objects sent in multipart

message

47

Mail message format
SMTP: protocol for exchanging email

messages
RFC 822: standard for text message format:
Ø header lines, e.g.,
§ To:
§ From:
§ Subject:

different from SMTP MAIL FROM,
RCPT TO: commands!

Ø Body: the “message”
§ ASCII characters only

header

body

blank
line

Ø MIME – Multipurpose
Internet Mail Extensions

§ Supports non-text attachments

48

Mail access protocols

Ø SMTP: delivery/storage to receiver’s server
Ø mail access protocol: retrieval from server
§ POP: Post Office Protocol [RFC 1939]: authorization, download
§ IMAP: Internet Mail Access Protocol [RFC 1730]: more features,

including manipulation of stored messages on server
§ HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

49

POP3 protocol
authorization phase
Ø client commands:
§ user: declare username
§ pass: password

Ø server responses
§ +OK
§ -ERR

transaction phase, client:
Ø list: list message numbers
Ø retr: retrieve message by number
Ø dele: delete
Ø quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

50

POP3 (more) and IMAP
more about POP3
Ø previous example uses POP3 “download

and delete” mode
§ Bob cannot re-read e-mail if he changes

client
Ø POP3 “download-and-keep”: copies of

messages on different clients
Ø POP3 is stateless across sessions

IMAP
Ø keeps all messages in one place: at

server
Ø allows user to organize messages in

folders
Ø keeps user state across sessions:
Ø names of folders and mappings between

message IDs and folder name

51

DNS: domain name system
people: many identifiers:
§ SSN, name, passport #

Internet hosts, routers:
§ IP address (32 bit) - used for

addressing datagrams
§ “name”, e.g., www.yahoo.com -

used by humans

Q: how to map between IP address
and name, and vice versa ?

Domain Name System:
§ distributed database

implemented in hierarchy of
many name servers

§ application-layer protocol:
hosts, name servers
communicate to resolve names
(address/name translation)

note: core Internet function, implemented as
application-layer protocol

52

DNS: services, structure
DNS services
Ø hostname to IP address translation
Ø host aliasing
§ canonical, alias names

Ø mail server aliasing
Ø runs over UDP and uses port 53
Ø load distribution
§ replicated Web servers: many IP addresses

correspond to one name

why not centralize DNS?
Ø single point of failure
Ø traffic volume
Ø distant centralized database
Ø maintenance

A: doesn‘t scale!

53

Domain Name Space
Ø DNS is hierarchical
Ø Assigned based on affiliation of institution

54

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approximation:
Ø client queries root server to find com DNS server
Ø client queries .com DNS server to get amazon.com DNS server
Ø client queries amazon.com DNS server to get IP address for www.amazon.com

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

… …

55

DNS: root name servers
Ø contacted by local name server that can not resolve name
Ø root name server:
§ contacts authoritative name server if name mapping not known
§ gets mapping
§ returns mapping to local name server

13 logical root name
“servers” worldwide
•each “server” replicated
many times

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD
Columbus, OH (5
other sites)

56

TLD, authoritative servers
top-level domain (TLD) servers:
§ responsible for com, org, net, edu, aero, jobs, museums, and

all top-level country domains, e.g.: uk, fr, ca, jp
§ Network Solutions maintains servers for .com TLD
§ Educause for .edu TLD

authoritative DNS servers:
§ organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
§ can be maintained by organization or service provider

57

Local DNS name server
Ø does not strictly belong to hierarchy
Ø each ISP (residential ISP, company, university)

has one
§ also called “default name server”

Ø when host makes DNS query, query is sent to its
local DNS server

§ has local cache of recent name-to-address translation pairs
(but may be out of date!)

§ acts as proxy, forwards query into hierarchy

58

DNS name resolution example
Ø host at cis.poly.edu wants IP address for gaia.cs.umass.edu

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

iterated query:
§ contacted server

replies with name of
server to contact

§ “I don’t know this
name, but ask this
server”

59

Infrastructure Services
Ø Name Resolution

Name resolution in practice, where the numbers 1–10
show the sequence of steps in the process.

60

DNS name resolution example

45

6

3
recursive query:
§ puts burden of

name resolution on
contacted name
server

§ heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

TLD DNS
server

61

DNS: caching, updating records
Ø once (any) name server learns mapping, it caches mapping
§ cache entries timeout (disappear) after some time (TTL)
§ TLD servers typically cached in local name servers
o thus root name servers not often visited

Ø cached entries may be out-of-date (best effort name-to-address
translation!)

§ if name host changes IP address, may not be known Internet-wide until all TTLs
expire

Ø update/notify mechanisms proposed IETF standard
§ RFC 2136

62

DNS records
DNS: distributed database storing resource records (RR)

type=NS
name is domain (e.g., foo.com)
value is hostname of
authoritative name server for
this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some

“canonical” (the real) name
§ www.ibm.com is really
servereast.backup2.ibm.com
§ value is canonical name

type=MX
§ value is name of mailserver

associated with name

TTL is the time to live of the resource record; it determines
when a resource should be removed from a cache.

63

DNS protocol, messages
Ø query and reply messages, both with same

message format
message header
§ identification: 16 bit # for

query, reply to query uses
same #

§ flags:
§ query or reply
§ recursion desired
§ recursion available
§ reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

64

DNS Protocol, messages

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

65

Inserting records into DNS

Ø example: new startup “Network Utopia”
Ø register name networkuptopia.com at DNS registrar (e.g.,

Network Solutions)
§ provide names, IP addresses of authoritative name server (primary and secondary)
§ registrar inserts two RRs into .com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

Ø create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

66

Pure P2P architecture
Ø no always-on server
Ø arbitrary end systems directly

communicate
Ø peers are intermittently connected and

change IP addresses

examples:
§ file distribution (BitTorrent)
§ Streaming (KanKan)
§ VoIP (Skype)

67

File distribution: client-server vs P2P
Question: how much time to distribute file (size F)

from one server to N peers?
§ peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

68

File distribution time: client-server
Ø server transmission: must sequentially send (upload) N file copies:
§ time to send one copy: F/us

§ time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach Dc-s > max{NF/us,,F/dmin}

Ø client: each client must download file copy
q dmin = min client download rate
q min client download time: F/dmin

us

network
di

ui

F

69

File distribution time: P2P
Ø server transmission: must upload at least one copy
§ time to send one copy: F/us

Ø client: each client must download file copy
§ min client download time: F/dmin

Ø clients: as aggregate must download NF bits
§ max upload rate (limiting max download rate) is us + Sui

time to distribute F
to N clients using

P2P approach
DP2P >=max{F/us,,F/dmin,,NF/(us + Sui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

us

network
di

ui

F

70

Client-server vs. P2P: example

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

71

P2P file distribution: BitTorrent protocol

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a
file

Alice arrives …

§ file divided into 256Kb chunks
§ peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

72

P2P file distribution: BitTorrent
Ø peer joining torrent:

§ has no chunks, but will accumulate them over time
from other peers

§ registers with tracker to get list of peers, connects to
subset of peers (“neighbors”)

Ø while downloading, peer uploads chunks to other peers
Ø peer may change peers with whom it exchanges chunks
Ø churn: peers may come and go
Ø once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

73

BitTorrent: requesting, sending file chunks

requesting chunks:
§ at any given time, different peers have

different subsets of file chunks
§ periodically, Alice asks each peer for

list of chunks that they have
§ Alice requests missing chunks from

peers, rarest first

sending chunks: tit-for-tat
§ Alice sends chunks to those four peers

currently sending her chunks at highest
rate
• other peers are choked by Alice (do

not receive chunks from her)
• re-evaluate top 4 every 10 secs

§ every 30 secs: randomly select another
peer, starts sending chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

74

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

75

BitTorrent: another aspect

Peers in a BitTorrent swarm download from other
peers that may not yet have the complete file

76

Video Streaming and CDNs: context
Ø video traffic: major consumer of Internet bandwidth
§ Netflix, YouTube: 37%, 16% of downstream residential ISP traffic
§ ~1B YouTube users, ~75M Netflix users

Ø challenge: scale - how to reach ~1B users?
§ single mega-video server won’t work (why?)

Ø challenge: heterogeneity
§ different users have different capabilities (e.g., wired versus mobile;

bandwidth rich versus bandwidth poor)

Ø solution: distributed, application-level infrastructure

77

Streaming stored video:

simple scenario:

video server
(stored video)

client

Internet

78

Bottlenecks in the system
Ø The first mile
Ø The last mile
Ø The server itself
Ø Peering points

video server
(stored video)

client

Internet
First MileLast Mile

ISP1 ISP2
Peering point

IXP

79

Streaming multimedia: DASH
Ø DASH: Dynamic, Adaptive Streaming over HTTP
Ø server:
§ divides video file into multiple chunks
§ each chunk stored, encoded at different rates
§ manifest file: provides URLs for different chunks

Ø client:
§ periodically measures server-to-client bandwidth
§ consulting manifest, requests one chunk at a time
o chooses maximum coding rate sustainable given current bandwidth
o can choose different coding rates at different points in time (depending on available bandwidth at time)

80

Streaming multimedia: DASH
Ø DASH: Dynamic, Adaptive Streaming over HTTP
Ø “intelligence” at client: client determines
§ when to request chunk (so that buffer starvation, or overflow does not

occur)
§ what encoding rate to request (higher quality when more bandwidth

available)
§ where to request chunk (can request from URL server that is “close” to

client or has high available bandwidth)

81

Content distribution networks
§ challenge: how to stream content (selected from millions of

videos) to hundreds of thousands of simultaneous users?

§ option 1: single, large “mega-server”
• single point of failure
• point of network congestion
• long path to distant clients
• multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

82

Content distribution networks
Ø challenge: how to stream content (selected from millions of

videos) to hundreds of thousands of simultaneous users?

Ø option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)

§ enter deep: push CDN servers deep into many access networks
o close to users
o used by Akamai, 1700 locations

§ bring home: smaller number (10’s) of larger clusters in POPs near (but not within)
access networks

o used by Limelight

83

Content Distribution Networks (CDNs)
Ø subscriber requests content from CDN
Ø CDN: stores copies of content at CDN nodes
§ e.g. Netflix stores copies of MadMen
§ directed to nearby copy, retrieves content
§ may choose different copy if network path congested

…

…

……

…

…

where’s Madmen?
manifest file

84

CDN content access: a closer look
Bob (client) requests video http://netcinema.com/6Y7B23V
§ video stored in CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob gets URL for video
http://netcinema.com/6Y7B23V
from netcinema.com web page

2

2. resolve http://netcinema.com/6Y7B23V
via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns URL
http://KingCDN.com/NetC6y&B23V 4

4&5. Resolve
http://KingCDN.com/NetC6y&B23
via KingCDN’s authoritative DNS,
which returns IP address of KingCDN
server with video

5
6. request video
from
KINGCDN
server,
streamed via
HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

85

Case study: Netflix

1

1. Bob manages
Netflix account

Netflix
registration,

accounting servers

Amazon
cloud

CDN
server

2
2. Bob browses
Netflix video

3

3. Manifest file
returned for
requested video

4. DASH
streaming

upload copies of
multiple versions
of video to CDN
servers

CDN
server

CDN
server

86

CDN: In short
Ø The idea of a CDN is to geographically distribute a collection of server surrogates

that cache pages normally maintained in some set of backend servers
n Akamai operates what is probably the best-known CDN.

Ø Thus, rather than have millions of users wait forever to contact www.cnn.com
when a big news story breaks—such a situation is known as a flash crowd—it is
possible to spread this load across many servers.

Ø Moreover, rather than having to traverse multiple ISPs to reach www.cnn.com, if
these surrogate servers happen to be spread across all the backbone ISPs, then it
should be possible to reach one without having to cross a peering point.

87

CDN Components

Components in a Content Distribution Network (CDN).

88

Summary
Ø We have discussed some of the popular applications in the Internet
§ Electronic mail, World Wide Web

Ø We have discussed multimedia applications
Ø We have discussed infrastructure services
§ Domain Name Services (DNS)

Ø We have discussed overlay networks
Ø We have discussed content distribution networks

