
1

Cyber-Physical Systems

Deadline based Scheduling
ICEN 553/453– Fall 2020
Prof. Dola Saha

2

Real-Time Systems
Ø The operating system, and in particular the scheduler, is perhaps the most

important component

Ø Correctness of the system depends not only on the logical result of the
computation but also on the time at which the results are produced

Ø Tasks attempt to react to events that take place in the outside world
Ø These events occur in “real time” and tasks must be able to keep up with

them

• Control of laboratory experiments
• Process control in industrial plants
• Robotics
• Air traffic control
• Telecommunications
• Military command and control systems

Examples:

3

Hard and Soft Real-Time Tasks
Ø Hard
§ One that must meet its

deadline
§ Otherwise it will cause

unacceptable damage or a
fatal error to the system

Ø Soft
§ Has an associated deadline

that is desirable but not
mandatory

§ It still makes sense to
schedule and complete the
task even if it has passed its
deadline

4

Periodic and Aperiodic Tasks
Ø Periodic tasks
§ Requirement may be stated as:

o Once per period T
o Exactly T units apart

Ø Aperiodic tasks
§ Has a deadline by which it must finish or start
§ May have a constraint on both start and finish time

5

Characteristics of Real Time Systems

Real-time operating systems have
requirements in five general areas:

Determinism
Responsiveness

User control
Reliability

Fail-soft operation

6

Determinism
Ø Concerned with how long an operating system delays

before acknowledging an interrupt
Ø Operations are performed at fixed, predetermined

times or within predetermined time intervals
o When multiple processes are competing for resources and processor time,

no system will be fully deterministic

The extent to which an
operating system can

deterministically satisfy
requests depends on:

The speed with which
it can respond to

interrupts

Whether the system
has sufficient capacity
to handle all requests
within the required

time

7

Responsiveness
Ø Together with determinism make up the response

time to external events
o Critical for real-time systems that must meet timing requirements

imposed by individuals, devices, and data flows external to the system

Ø Concerned with how long, after acknowledgment, it
takes an operating system to service the interrupt

• Amount of time required to initially handle the interrupt and begin execution of the
interrupt service routine

• Amount of time required to perform the ISR
• Effect of interrupt nesting

Responsiveness includes:

8

User Control
Ø Generally much broader in a real-time operating system than

in ordinary operating systems
Ø It is essential to allow the user fine-grained control over task

priority
Ø User should be able to distinguish between hard and soft tasks

and to specify relative priorities within each class
Ø May allow user to specify such characteristics as:

Paging or
process

swapping

What processes
must always be
resident in main

memory

What disk
transfer

algorithms are
to be used

What rights the
processes in

various priority
bands have

9

Reliability
Ø More important for real-time systems than non-

real time systems
Ø Real-time systems respond to and control events

in real time so loss or degradation of performance
may have catastrophic consequences such as:
o Financial loss
o Major equipment damage
o Loss of life

10

Fail-Soft Operation
Ø A characteristic that refers to the ability of a

system to fail in such a way as to preserve as
much capability and data as possible

Ø Important aspect is stability
o A real-time system is stable if the system will meet the

deadlines of its most critical, highest-priority tasks even if
some less critical task deadlines are not always met

11

Features common to Most RTOSs
Ø A stricter use of priorities than in an ordinary OS,

with preemptive scheduling that is designed to
meet real-time requirements

Ø Interrupt latency is bounded and relatively short
Ø More precise and predictable timing

characteristics than general purpose OSs

12

Task Model

13

Scheduling Strategies
Ø Goal: all task executions meet their deadlines

Ø A schedule that accomplishes this is called a
feasible schedule.

Ø A scheduler that yields a feasible schedule for any
task set is said to be optimal with respect to
feasibility.

14

Criteria or Metrices
Ø Processor Utilization
Ø Maximum Lateness

Ø Total Completion Time or Makespan

Ø Average Response Time

15

Rate Monotonic Scheduling
Ø Simple process model: n tasks invoked periodically with:
§ periods T1, … ,Tn, which equal the deadlines
§ known worst-case execution times (WCET) C1, … ,Cn
o no mutexes, semaphores, or blocking I/O

§ independent tasks, no precedence constraints
§ fixed priorities
§ preemptive scheduling

Ø Rate Monotonic Scheduling (RMS): priorities ordered by
period (smallest period has the highest priority)

16

Feasibility for RMS
Ø Feasibility is defined for RMS to mean that every task

executes to completion once within its designated period.

Ø Theorem: Under the simple process model, if any priority
assignment yields a feasible schedule, then RMS also yields a
feasible schedule.

Ø RMS is optimal in the sense of feasibility.

Liu and Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environment,” J. ACM, 1973.

17

Showing Optimality of RMS:
Ø Consider two tasks with different periods.
Ø Is a non-preemptive schedule feasible?

C1
T1

C2
T2

18

Showing Optimality of RMS:
Ø Non-preemptive schedule is not feasible. Some

instance of the Red Task (2) will not finish within
its period if we do non-preemptive scheduling.

C1
T1

C2
T2

19

Showing Optimality of RMS:
Ø What if we had a preemptive scheduling with

higher priority for red task?

C1
T1

C2
T2

20

Showing Optimality of RMS:
Ø Preemptive schedule with the red task having

higher priority is feasible. Note that preemption of
the purple task extends its completion time.

preempted
C1 C1

T1

21

Alignment of tasks
Ø Completion time of the lower priority

task is worst when its starting phase
matches that of higher priority tasks.

Ø Thus, when checking schedule
feasibility, it is sufficient to consider
only the worst case: All tasks start their
cycles at the same time.

T1
C1

22

Showing Optimality of RMS: (two tasks)
Ø It is sufficient to show that if a non-RMS schedule

is feasible, then the RMS schedule is feasible.
Ø Consider two tasks as follows:

C1
T1

C2
T2

23

From this, we can see that the non-RMS
schedule is feasible if and only if

We can then show that this condition
implies that the RMS schedule is feasible.

Showing Optimality of RMS: (two tasks)

221 TCC £+

The non-RMS, fixed priority schedule looks like this:

T2

C2C1

24

The condition for the non-RMS schedule
feasibility:

is clearly sufficient (though not necessary)
for feasibility of the RMS schedule.

Showing Optimality of RMS: (two tasks)

221 TCC £+

The RMS schedule looks like this: (task with smaller period
moves earlier)

T2

C2 C1

25

Comments
Ø This proof can be extended to an arbitrary number

of tasks (though it gets much more tedious).
Ø This proof gives optimality only w.r.t. feasibility.
Ø Practical implementation:
§ Timer interrupt at greatest common divisor of the periods.
§ Multiple timers

26

RM Scheduler: Processor Utilization
Ø If μ > 1 for any task set, then that task set has no

feasible schedule
Ø Utilization Bound: RMS is feasible when
Ø As n gets large,
Ø If a task set with any number of tasks does not

attempt to use more than 69.3% of the available
processor time, then the RM schedule will meet all
deadlines.

Liu and Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environment,” J. ACM, 1973.

27

Ø Given n independent one-time tasks with deadlines
d1 , … , dn, schedule them to minimize the maximum lateness,
defined as

Ø where fi is the finishing time of task i. Note that this is negative
iff all deadlines are met.

Ø Earliest Due Date (EDD) algorithm: Execute them in order of
non-decreasing deadlines.

Ø Note that this does not require preemption.

Jackson’s Algorithm: EDD (1955)

{ }iini
dfL -=

££1max max

28

EDD is Optimal
Ø Optimal in the Sense of Minimizing Maximum

Lateness
§ To prove, use an interchange argument. Given a schedule S that is not

EDD, there must be tasks a and b where a immediately precedes b in the
schedule but
da > db. Why?

§ We can prove that this schedule can be improved by interchanging a and b.
Thus, no non-EDD schedule is achieves smaller max lateness than EDD,
so the EDD schedule must be optimal.

29

Maximum Lateness
Ø First Schedule (non-EDD)

§ where

Ø Second Schedule (EDD)

30

Consider Cases

In both cases, the second schedule has a maximum
lateness no greater than that of the first schedule.
EDD minimizes maximum lateness.

31

Horn’s algorithm: EDF (1974)
Ø Extend EDD by allowing tasks to “arrive” (become

ready) at any time.
Ø Earliest deadline first (EDF): Given a set of n

independent tasks with arbitrary arrival times, any
algorithm that at any instant executes the task with
the earliest absolute deadline among all arrived tasks
is optimal w.r.t. minimizing the maximum lateness.

Ø Proof uses a similar interchange argument.

32

Using EDF for Periodic Tasks
Ø The EDF algorithm can be applied to periodic

tasks as well as aperiodic tasks.
§ Simplest use: Deadline is the end of the period.
§ Alternative use: Separately specify deadline (relative to the

period start time) and period.

33

RMS vs. EDF? Which one is better?
Ø What are the pros and cons of each?

34

Comparison of EDF and RMS
Ø Favoring RMS
§ Scheduling decisions are simpler (fixed priorities vs. the

dynamic priorities required by EDF. EDF scheduler must
maintain a list of ready tasks that is sorted by priority.)

35

Comparison of EDF and RMS
Ø Favoring EDF
§ Since EDF is optimal w.r.t. maximum lateness, it is also

optimal w.r.t. feasibility. RMS is only optimal w.r.t.
feasibility.

§ For infeasible schedules, RMS completely blocks lower
priority tasks, resulting in unbounded maximum lateness.

§ EDF can achieve full utilization where RMS fails to do that.
§ EDF results in fewer preemptions in practice, and hence less

overhead for context switching.
§ Deadlines can be different from the period.

36

Precedence Constraints
Ø A directed acyclic graph (DAG) shows

precedences, which indicate which tasks must
complete before other tasks start.

1
2

3

4

5

6

DAG, showing that task 1 must complete
before tasks 2 and 3 can be started, etc.

37

Example: EDF Schedule
Ø Is this feasible?

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

38

EDF is not optimal under precedence constraints

Ø The EDF schedule chooses task 3 at time 1
because it has an earlier deadline. This choice
results in task 4 missing its deadline.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

39

Latest Deadline First (LDF) Lawler 1973

Ø The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node
with the latest deadline to be scheduled last, and
work backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

40

Latest Deadline First (LDF)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node
with the latest deadline to be scheduled last, and
work backwards.

41

Latest Deadline First (LDF)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node
with the latest deadline to be scheduled last, and
work backwards.

42

Latest Deadline First (LDF)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node
with the latest deadline to be scheduled last, and
work backwards.

43

Latest Deadline First (LDF)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node
with the latest deadline to be scheduled last, and
work backwards.

44

Latest Deadline First (LDF)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node
with the latest deadline to be scheduled last, and
work backwards.

45

Latest Deadline First (LDF)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node
with the latest deadline to be scheduled last, and
work backwards.

46

LDF is optimal for precedence constraints

Ø The LDF schedule shown at the bottom respects
all precedences and meets all deadlines.

Ø Also minimizes maximum lateness

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

47

Latest Deadline First (LDF)
Ø LDF is optimal in the sense that it minimizes the

maximum lateness.

Ø It does not require preemption. (We’ll see that EDF
can be made to work with preemption.)

Ø However, it requires that all tasks be available and
their precedences known before any task is executed.

48

EDF with Precedences or EDF*
Ø With a preemptive scheduler, EDF can be modified to

account for precedences and to allow tasks to arrive at
arbitrary times. Simply adjust the deadlines and
arrival times according to the precedences.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Recall that for the tasks at the left,
EDF yields the schedule above,
where task 4 misses its deadline.

49

EDF with Precedences: Modifying Release Times

),max(iijj Crrr +=¢

Ø Given n tasks with precedences and release times
ri, if task i immediately precedes task j, then
modify the release times as follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0

C3 = 1
d3 = 4
r‘3 = 1

C2 = 1
d2 = 5
r‘2 = 1

C4 = 1
d4 = 3
r‘4 = 2

C5 = 1
d5 = 5
r‘5 = 2

C6 = 1
d6 = 6
r‘6 = 2

ri = 0
assume:

50

EDF with Precedences: Modifying Deadlines

),min(jjii Cddd -¢=¢

Ø Given n tasks with precedences and deadlines di,
if task i immediately precedes task j, then modify
the deadlines as follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0
d‘2 = 1

C3 = 1
d3 = 4
r‘3 = 1
d‘3 = 4

C2 = 1
d2 = 5
r‘2 = 1
d‘2 = 2

C4 = 1
d4 = 3
r‘4 = 2
d'4 = 3

C5 = 1
d5 = 5
r‘5 = 2
d‘5 = 5

C6 = 1
d6 = 6
r‘6 = 2
d‘6 = 6

Using the revised release times and deadlines,
the above EDF schedule is optimal and meets
all deadlines.

ri = 0
assume:

51

Optimality
Ø Generalized modified deadline

Ø EDF with precedences is optimal in the sense of
minimizing the maximum lateness.

52

Scheduling in Shared Resource
Ø concurrent tasks use shared resources in exclusive

mode
Ø Recall: critical section and mutexes/semaphores

Giorgio C. Buttazzo, Hard Real-Time Computing Systems, Springer, 2004.

A task waiting for an exclusive resource is said to be blocked on that resource

53

Two tasks sharing exclusive resources
#include <pthread.h>
...
pthread_mutex_t lock;

void* addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void* update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
elementType* element = head;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

54

Blocking on critical section

Ø τ1 has a higher priority than τ2

Ø τ2 is activated first
§ after a while, it enters the critical section and locks the semaphore.

Ø While τ2 is executing the critical section
§ task τ1 arrives, and it preempts τ2 as it has higher priority and starts executing.

Ø At t1, τ1 is blocked on the semaphore, so τ2 resumes
Ø At t2, τ2 releases the critical section
Ø Maximum blocking time of τ1 is equal to the time needed by τ2

to execute its critical section.

55

Priority Inversion with Mutex

Ø A priority inversion is said to occur in the interval
[t3, t6], since the highest-priority task τ1 waits for
the execution of lower-priority tasks (τ2 and τ3).

56

Priority Inversion: Why is it a problem?
Ø Maximum blocking time of τ1 depends on
§ the length of the critical section executed by τ3

§ the worst-case execution time of τ2

Ø Can lead to uncontrolled blocking (with multiple
medium priority tasks)

§ can cause critical deadlines to be missed

Ø The duration of priority inversion is unbounded

57

Resource Access Protocols to avoid PI
Ø Non-Preemptive Protocol (NPP)
Ø Highest Locker Priority (HLP) or Immediate

Priority Ceiling (IPC)
Ø Priority Inheritance Protocol (PIP)
Ø Priority Ceiling Protocol (PCP)
Ø Stack Resource Policy (SRP)

58

Terminology
Ø n periodic tasks, τ1,τ2,...,τn

Ø m shared resources, R1,R2,...,Rm

Ø Each task is characterized by
§ a period Ti

§ a worst-case computation time Ci

Ø Each resource Rk is guarded by a distinct semaphore Sk

Ø each task is characterized by
§ a fixed nominal priority Pi (assigned by the algorithm) and
§ an active priority pi (pi ≥ Pi), which is dynamic and initially set to Pi

59

Terminology

60

Terminology

61

Assumptions
Ø Priorities:
§ Tasks τ1 , τ2 , . . . , τn have different priorities
§ They are listed in descending order of nominal priority
§ τ1 has the highest nominal priority

Ø Tasks do not suspend themselves on I/O
Ø The critical sections used by any task are properly nested
§ given any pair

Ø Critical sections are guarded by binary semaphores

62

Non-Preemptive Protocol
Ø Disallow preemption during the execution of any critical section

Ø Raise the priority of a task to the highest priority level whenever it enters a
shared resource

Ø The dynamic priority is then reset to the nominal value Pi when the task
exits the critical section

63

Example (NPP preventing priority inversion)

64

NPP causes unnecessary blocking

65

Blocking Time Computation (NPP)
Ø task τi cannot preempt a lower priority task τj if τj is inside a critical section

Ø a task inside a resource R cannot be preempted, only one resource can be
locked at any time t

Ø a task τi can be blocked at most for the length of a single critical section
belonging to lower priority tasks

Ø maximum blocking time τi is the duration of the longest critical section of
lower priority tasks

Ø one unit of time is subtracted from δj,k since Zj,k must start before the arrival
of τi to block it

66

Highest Locker Priority (HLP)
Ø Raises the priority of a task that enters a resource Rk to the

highest priority among the tasks sharing that resource
Ø as soon as a task τi enters a resource Rk, its dynamic priority is

raised to the level

Ø each resource Rk is assigned a priority ceiling C(Rk)
(computed off-line) equal to the maximum priority of the tasks
sharing Rk

Ø Also termed Immediate Priority Ceiling

67

HLP Example

68

Blocking Time (HLP)
Ø a task τi can only be blocked by critical sections belonging to

lower priority tasks with a resource ceiling higher than or
equal to Pi

Ø a task can be blocked at most once (Proof in the book)
Ø the maximum blocking time of τi is given by the duration of

the longest critical section among those that can block τi

69

Priority Inheritance Protocol (PIP)
Ø When a task τi blocks one or more higher-priority tasks, it temporarily assumes

(inherits) the highest priority of the blocked tasks
Ø When a task τi is blocked on a semaphore, it transmits its active priority to the task

τj, that holds that semaphore
Ø τj executes the rest of its critical section with a priority pj = pi.

Ø When τj exits a critical section the active priority of τj is updated
§ if no other tasks are blocked by τj, pj is set to Pj

§ otherwise it is set to the highest priority of the tasks blocked by τj

Ø Priority inheritance is transitive
§ if a task τ3 blocks a task τ2, and τ2 blocks a task τ1, then τ3 inherits the priority of τ1

via τ2

70

Types of Blocking in PIP
Ø Direct
§ a higher-priority task tries to acquire a resource held by a lower-priority task
§ Required to ensure consistency of shared resource

Ø Push-through
§ a medium-priority task is blocked by a low-priority task that has inherited a higher priority

from a task it directly blocks
§ Required to void unbounded priority inversion

71

Nested Critical Section (PIP)
Ø task τ1 uses a

resource Ra guarded
by a semaphore Sa,

Ø task τ2 uses a
resource Rb guarded
by a semaphore Sb

Ø task τ3 uses both
resources in a nested
fashion (Sa is locked
first)

72

Transitive Priority Inheritance
Ø task τ1 uses a resource Ra

guarded by a semaphore Sa

Ø task τ3 uses a resource Rb
guarded by a semaphore Sb

Ø task τ2 uses both resources in a
nested fashion (Sa protects the
external critical section and Sb
the internal one)

Transitive priority inheritance can occur only in the presence of nested critical sections

A transitive inheritance occurs when a high-
priority task τH is blocked by a medium-priority
task τM, which in turn is blocked by a low-
priority task τL

73

Blocking Time (PIP)
Ø a task τi can be blocked at most once for each of the li lower priority tasks.

Hence, for each lower priority task τj that can block τi, sum the duration of
the longest critical section among those that can block τi

Ø a task τi can be blocked at most once for each of the si semaphores that can
block τi. Hence, for each semaphore Sk that can block τi, sum the duration
of the longest critical section among those that can block τi

Ø a task τi can be blocked for minimum of the critical sections

74

Chained Blocking

Ø τ1 is blocked for the duration of two critical sections, once to wait for τ3 to release
Sa and then to wait for τ2 to release Sb

Ø In the worst case, if τ1 accesses n distinct semaphores that have been locked by n
lower-priority tasks, τ1 will be blocked for the duration of n critical sections.

75

Deadlock

Ø the deadlock does not depend on the Priority Inheritance
Protocol but is caused by an erroneous use of semaphores

76

Priority Ceiling Protocol (PCP)
Ø The Priority Ceiling Protocol (PCP)
§ bound the priority inversion phenomenon
§ prevent the formation of deadlocks and chained blocking

Ø Once a task enters its first critical section, it can never
be blocked by lower-priority tasks until its
completion

Ø Each semaphore is assigned a priority ceiling equal to
the highest priority of the tasks that can lock it

77

Example Priority Ceiling Protocol

Ceiling Blocking is
necessary for avoiding
deadlock and chained
blocking

τ 2
at

te
m

pt
s t

o
lo

ck
 S
C

τ 1
at

te
m

pt
s t

o
lo

ck
 S
A

τ1 is blocked as its priority is not higher than C(SB)

P2 is not greater than C(SC).

P 1
>

C
(S
C
)

78

Lemma and Proof
If a task τk is preempted within a critical section Za by a task τi that enters a
critical section Zb, then, under the Priority Ceiling Protocol, τk cannot inherit
a priority higher than or equal to that of task τi until τi completes.

Ø If τk inherits a priority higher than or equal to that of task τi before τi
completes, there must exist a task τ0 blocked by τk, such that P0 ≥ Pi.

Ø This leads to the contradiction that τ0 cannot be blocked by τk.
Ø Since τi enters its critical section, its priority must be higher than the

maximum ceiling C∗ of the semaphores currently locked by all lower-
priority tasks.

Ø Hence, P0 ≥ Pi > C∗.
Ø But since P0> C∗, τ0 cannot be blocked by τk

79

Lemma and Proof
The Priority Ceiling Protocol prevents transitive blocking

Ø Suppose that a transitive block occurs
§ that is, there exist three tasks τ1, τ2, and τ3, with decreasing priorities,

such that τ3 blocks τ2 and τ2 blocks τ1.

Ø By the transitivity of the protocol, τ3 will inherit the priority of τ1.

Ø This contradicts the Lemma, which shows that τ3 cannot inherit a priority
higher than or equal to P2.

Ø Thus, PCP prevents transitive blocking.

80

Lemma and Proof
The Priority Ceiling Protocol prevents deadlocks

Ø Assume that a task cannot deadlock by itself, a deadlock can
only be formed by a cycle of tasks waiting for each other

Ø By the transitivity of the protocol, task τn would inherit the
priority of τ1, which is assumed to be higher than Pn.

Ø This contradicts prior Lemma.
Ø Hence PCP prevents deadlock.

81

Blocking Time Computation
A task τi can only be blocked by critical sections belonging to
lower priority tasks with a resource ceiling higher than or equal
to Pi.

Since τi can be blocked at most once, the maximum blocking
time τi can suffer is given by the duration of the longest critical
section among those that can block τi

