
1

Cyber-Physical Systems

Scheduling
IECE 553/453– Fall 2020
Prof. Dola Saha

2

Scheduler
Ø A scheduler makes the decision about what to do

next at certain points in time
Ø When a processor becomes available, which

process will be executed

The material in these set of slides is borrowed from the book: “Operating Systems”, by William Stallings

3

Scheduler Policy
Ø Different schedulers will have different goals
§ Maximize throughput
§ Minimize latency
§ Prevent indefinite postponement
§ Complete process by given deadline
§ Maximize processor utilization

4

Scheduler Levels
Ø High-level scheduling
§ Determines which jobs can compete for resources
§ Controls number of processes in system at one time

Ø Intermediate-level scheduling
§ Determines which processes can compete for processors
§ Responds to fluctuations in system load

Ø Low-level scheduling
§ Assigns priorities
§ Assigns processors to processes

5

Processor Scheduling

Ø Long-term scheduling
§ when a new process is created
§ adds the new process to the set of processes that are active

Ø Medium-term scheduling
§ swapping function, adds a process to those that are at least

partially in main memory and therefore available for execution

Ø Short-term scheduling
§ actual decision of which ready process to execute next.

6

Queuing Diagram
Ø Long Term (Infrequently)
§ Controls degree of multiprogramming

Ø Medium Term
§ swapping-in decision will consider the memory requirements

of the swapped-out processes

Ø Short Term (Frequently)
§ Clock interrupts, I/O interrupts, Operating system calls,

Signals (e.g., semaphores)

7

Priorities
Ø Static priorities
§ Priority assigned to a process does not change
§ Easy to implement
§ Low overhead
§ Not responsive to changes in environment

Ø Dynamic priorities
§ Responsive to change
§ Promote smooth interactivity
§ Incur more overhead, justified by increased responsiveness

8

How to decide which thread to schedule?
ØConsiderations:
§ Preemptive vs. non-preemptive scheduling
§ Periodic vs. aperiodic tasks
§ Fixed priority vs. dynamic priority
§ Priority inversion anomalies
§ Other scheduling anomalies

9

Non-Preemptive vs Preemptive
Ø Non-Preemptive
§ Once a process is in the running

state, it will continue until it
terminates or blocks itself for I/O

Ø Preemptive
§ Currently running process may be

interrupted and moved to ready
state by the OS

§ Decision to preempt may be
performed
o when a new process arrives,
o when an interrupt occurs that

places a blocked process in the
Ready state, or

o periodically, based on a clock
interrupt

10

Preemptive Scheduling
Ø Assume all threads have priorities
§ either statically assigned (constant for the duration of the thread)
§ or dynamically assigned (can vary).

Ø Assume that the kernel/OS keeps track of which
threads are “enabled”

Ø Preemptive scheduling:
§ At any instant, the enabled thread with the highest priority is executing.
§ Whenever any thread changes priority or enabled status, the kernel can

dispatch a new thread.

11

Periodic scheduling

Ø Each execution instance of a task is called a job.
Ø For periodic scheduling, the best that we can do is

to design an algorithm which will always find a
schedule if one exists.

Ø A scheduler is defined to be optimal iff it will find
a schedule if one exists.

T1

T2

12

Scheduling Policies
Ø First Come First Serve
Ø Round Robin
Ø Shortest Process Next
Ø Shortest Remaining Time Next
Ø Highest Response Ratio Next
Ø Feedback Scheduler
Ø Fair Share Scheduler

13

First Come First Serve (FCFS)
Ø Processes dispatched according to arrival time
Ø Simplest scheme
Ø Nonpreemptible
Ø Rarely used as primary scheduling algorithm
Ø Implemented using FIFO
Ø Tends to favor processor-bound processes over

I/O-bound processes

14

Round Robin
Ø Based on FIFO
Ø Processes run only for a limited amount of time

called a time slice or a quantum
Ø Preemptible
Ø Requires the system to maintain several processes

in memory to minimize overhead
Ø Often used as part of more complex algorithms

15

Effect of Quantum Size

Process allocated
time quantum

Time

Response time
s

Quantum
q

q - s

Figure 9.6 Effect of Size of Preemption Time Quantum

Interaction
complete

(a) Time quantum greater than typical interaction

Process allocated
time quantum

s

q

Process allocated
time quantum

Process
preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction
complete

Process allocated
time quantum

Time

Response time
s

Quantum
q

q - s

Figure 9.6 Effect of Size of Preemption Time Quantum

Interaction
complete

(a) Time quantum greater than typical interaction

Process allocated
time quantum

s

q

Process allocated
time quantum

Process
preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction
complete

q > Typical Interaction Time q < Typical Interaction Time

16

Quantum Size
Ø Determines response time to interactive requests
Ø Very large quantum size
§ Processes run for long periods
§ Degenerates to FIFO

Ø Very small quantum size
§ System spends more time context switching than running processes

Ø Middle-ground
§ Long enough for interactive processes to issue I/O request
§ Batch processes still get majority of processor time

17

Virtual Round Robin
Ø FCFS auxiliary queue to

which processes are moved
after being released from an
I/O block.

Ø When a dispatching decision
is to be made, processes in
the auxiliary queue get
preference over those in the
main ready queue.

Figure 9.7 Queuing Diagram for Virtual Round-Robin Scheduler

I/O 1 Wait

I/O 2 Wait

I/O n Wait

Dispatch

Time-out

Release
Ready Queue

Admit
Processor

I/O 1 Queue

Auxiliary Queue

I/O 1
Occurs

I/O 2
Occurs

I/O n
Occurs

I/O 2 Queue

I/O n Queue

18

Virtual Round Robin
Ø When a process is dispatched

from the auxiliary queue, it runs
no longer than a time equal to the
basic time quantum minus the
total time spent running since it
was last selected from the main
ready queue.

Ø Performance studies indicate that
this approach is better than round
robin in terms of fairness.

Figure 9.7 Queuing Diagram for Virtual Round-Robin Scheduler

I/O 1 Wait

I/O 2 Wait

I/O n Wait

Dispatch

Time-out

Release
Ready Queue

Admit
Processor

I/O 1 Queue

Auxiliary Queue

I/O 1
Occurs

I/O 2
Occurs

I/O n
Occurs

I/O 2 Queue

I/O n Queue

19

Shortest Process Next (SPN) Scheduling
Ø Scheduler selects process with smallest time to finish
§ Lower average wait time than FIFO
o Reduces the number of waiting processes

§ Potentially large variance in wait times, starvation for longer processes
§ Nonpreemptive
o Results in slow response times to arriving interactive requests

§ Relies on estimates of time-to-completion
o Can be inaccurate

§ Unsuitable for use in modern interactive systems

20

How to predict execution time in SPN ?

Ø Store the Sum
Ø Higher weight to recent instances
Ø The older the observation, the less it is counted in to the

average.

21

Age of Observation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F = 0.2

F = 0.5

F = 0.8

10987654321

Age of Observation

C
oe

ffi
ci

en
t V

al
ue

Figure 9.8 Exponential Smoothing Coefficients

22

Exponential Averaging

0

2

4

6

8

10

F = 0.8

F = 0.5

Simple Average

Observed value

2019181716151413121110987654321

0

5

10

15

20

F = 0.8
F = 0.5
Simple Average
Observed value

2019181716151413121110987654321

(a) Increasing function

(b) Decreasing function

 Figure 9.9 Use of Exponential Averaging

Time

Time

O
bs

er
ve

d
or

 a
ve

ra
ge

 v
al

ue
O

bs
er

ve
d

or
 a

ve
ra

ge
 v

al
ue

0

2

4

6

8

10

F = 0.8

F = 0.5

Simple Average

Observed value

2019181716151413121110987654321

0

5

10

15

20

F = 0.8
F = 0.5
Simple Average
Observed value

2019181716151413121110987654321

(a) Increasing function

(b) Decreasing function

 Figure 9.9 Use of Exponential Averaging

Time

Time

O
bs

er
ve

d
or

 a
ve

ra
ge

 v
al

ue
O

bs
er

ve
d

or
 a

ve
ra

ge
 v

al
ue

23

Shortest Remaining Time (SRT)
Ø Preemptive version of SPF
Ø Shorter arriving processes preempt a running process
Ø Very large variance of response times: long processes

wait even longer than under SPF
Ø Not always optimal
§ Short incoming process can preempt a running process that is near

completion
§ Context-switching overhead can become significant

24

Highest Response Ratio Next (HRRN)

Ø Chooses next process with the greatest response ratio
Ø Min. value of R = 1 (when process is created)
Ø Attractive because it accounts for the age of the process
Ø While shorter jobs are favored, aging without service increases

the ratio so that a longer process will eventually get past
competing shorter jobs

25

Feedback Scheduling
Ø Scheduling is done on a preemptive (at time

quantum) basis, and a dynamic priority
mechanism is used.

Ø When a process first enters the system, it is
placed in RQ0.

Ø After its first preemption, when it returns to
the Ready state, it is placed in RQ1.

Ø Each subsequent time that it is preempted, it is
demoted to the next lower-priority queue.

Ø Once in the lowest-priority queue, it is
returned to this queue repeatedly until it
completes execution

Figure 9.10 Feedback Scheduling

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQn

Processor

26

Queuing Analysis

theoretical maximum input rate that can
be handled by the system is

limit the input rate for a single server to
between 70 and 90% of the theoretical
maximum

27

Multiple Server

28

Queuing Analysis

29

Poisson Arrival Rate
Ø Arrivals occurring according to a Poisson process are referred

to as random arrivals.
Ø The probability of arrival of an item in a small interval is

proportional to the length of the interval, and is independent of
the amount of elapsed time since the arrival of the last item.

Ø Exponential Distribution

30

Queuing Relationship

31

Performance
Ø Any scheduling policy that chooses the next item

to be served independent of service time obeys
the relationship:

32

Single Server Queue with Two Priorities

33

Single Server Queue with Two Priorities

34

Example
Ø A data stream consisting of a mixture of long and short packets being transmitted by a packet-

switching node and that the rate of arrival of the two types of packets is equal. Suppose both
packets have lengths that are exponentially distributed, and the long packets have a mean
packet length of 10 times the short packets. In particular, let us assume a 64-Kbps
transmission link and the mean packet lengths are 80 and 800 octets. Then the two service
times are 0.01 and 0.1 seconds. Also assume the arrival rate for each type is 8 packets per
second. So the shorter packets are not held up by the longer packets, let us assign the shorter
packets a higher priority.

35

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5
Utilization (W)

2 priority classes
Q1 = Q2
ts2 = 5 � ts1

N
or

m
al

iz
ed

 re
sp

on
se

 ti
m

e
(T
r/T

s)

Figure 9.11 Overall Normalized Response Time

0.6 0.7 0.8 0.9 1.0

No priority

Priority

Priority
with preemption

Normalized Response Time

36

Ø Shorter Processes

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5
Utilization (W)

2 priority classes
Q1 = Q2
ts2 = 5 � ts1

N
or

m
al

iz
ed

 re
sp

on
se

 ti
m

e
(T
r1

/T
s1

)

Figure 9.12 Normalized Response Time for Shorter Processes

0.6 0.7 0.8 0.9 1.0

No priority

Priority

Priority
with preemption

Normalized Response Time

37

Normalized Response Time
Ø Longer Processes

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5
Utilization (W)

2 priority classes
Q1 = Q2
ts2 = 5 � ts1

N
or

m
al

iz
ed

 re
sp

on
se

 ti
m

e
(T
r2

/T
s2

)

Figure 9.13 Normalized Response Time for Longer Processes

0.6 0.7 0.8 0.9 1.0

No priority
Priority

Priority
with preemption

38

Figure 9.14 Simulation Results for Normalized Turnaround Time

Percentile of time required

N
or

m
al

iz
ed

 tu
rn

ar
ou

nd
 ti

m
e

FCFS

FCFS

HRRN

HRRN

SPN

RR (q = 1)
RR (q = 1)

FB

FB

SRT

SRT

SPN

0
1

10

100

10 20 30 40 50 60 70 80 90 100

Normalized Turnaround Time

39

Figure 9.15 Simulation Results for Waiting Time

Percentile of time required

W
ai

t t
im

e

FCFS
FCFS

HRRN

HRRN

RR
(q = 1)

RR (q = 1)

FB

FB
SRT

SPN

SPN

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Waiting Time

40

Fair Share Scheduler
§ Scheduling decisions based on the process sets
§ Each user is assigned a share of the processor
§ Objective is to monitor usage to give fewer resources to users who have

had more than their fair share and more to those who have had less than
their fair share

§ Some user groups more important than others
§ Ensures that less important groups cannot monopolize resources
§ Unused resources distributed according to the proportion of resources each

group has been allocated
§ Groups not meeting resource-utilization goals get higher priority

41

Fair Share

Ø The priority of a process drops as the process uses the processor and as the group to which the
process belongs uses the processor.

Ø Group utilization: the average is normalized by dividing by the weight of that group. The
greater the weight assigned to the group, the less its utilization will affect its priority.

Each process is assigned a base priority.
Ø Scheduling is done on the basis of priority
Ø Takes into account

Ø the underlying priority of the process
Ø its recent processor usage
Ø the recent processor usage of the group to which

the process belongs.
Ø The higher the numerical value of the priority, the

lower is the priority.

42

Fair Share

43

Example
Ø Process A is scheduled first.
Ø At the end of one second, it is preempted.
Ø Processes B and C now have the higher

priority, and process B is scheduled.
Ø At the end of the second time unit,

process A has the highest priority.
Ø The pattern repeats: A, B, A, C, A, B, and

so on.
Ø 50% of the processor is allocated to

process A, which constitutes one group,
and 50% to processes B and C, which
constitute another group.

Priority

Colored rectangle represents executing process

60 0
1
2
�
�

60

0
1
2
�
�

60

74 15
16
17
�
�

75

15
16
17
�
�

75

78 18
19
20
�
�

78

18
19
20
�
�

78

67 0
1
2
�
�

60

15
16
17
�
�

75

74 15 15
16
17
�
�

75

60 0
1
2
�
�

60

0
1
2
�
�

60

60 0 0
1
2
�
�

60

60 0 0

90 30 30

96 37 37

98 39 39 70 3 18 76 15 18

90 30 30

81 7 37 93 30 37

75 0 30

60 0 0

Process
CPU
count

Process A

Group 1 Group 2

Process B Process C
Group
CPU
count

Process
CPU
count

Group
CPU
count

Process
CPU
count

Group
CPU
countPriority Priority

Time
0

1

2

3

4

5

Figure 9.16 Example of Fair Share Scheduler—Three Processes, Two Groups

44

UNIX Scheduler
Ø Designed to provide good response time for interactive users

while ensuring that low-priority background jobs do not starve
Ø Employs multilevel feedback using round robin within each of

the priority queues
Ø Makes use of one-second preemption
Ø Priority is based on process type and execution history
Ø Used in older UNIX systems

45

Scheduling Formula

Ø Every second:
§ The priority of each process is recomputed
§ a new scheduling decision is made

Ø Base priority divides processes into fixed bands of priority levels
Ø The CPU and nice components are restricted to prevent a process from

migrating out of its assigned band (assigned by the base priority level).

46

Characteristics of Scheduling Policies

