
Cyber-Physical Systems

Introduction

IECE 553/453– Fall 2019 Prof. Dola Saha

Introductions

- > Instructor
 - Prof. Dola Saha, PhD University of Colorado Boulder
 - http://www.albany.edu/faculty/dsaha/
 - https://www.albany.edu/wwwres/facultyresearch/mesalabs/
 - dsaha@albany.edu
- > Students (Identify your areas of interest)
 - Communications & Networking, Signal & Information Processing, Computer Engineering, Electronic Circuits & Systems

Students

Information

Course Website:

https://www.albany.edu/faculty/dsaha/teach/2020Fall_ECE553/2020Fall_EC
 E553.html

Blackboard:

https://blackboard.albany.edu/

Course Website	Blackboard
Lecture Slides	Lab Assignments / Pre-Lab
Class Calendar / Schedule	Homework Assignments / Submission / Solution
Other Information	Announcements
	Grades

Office Hours

Instructor

Same Zoom Link

Tuesday – 12:30-1:30pm

Thursday -12:30-1:30pm

By appointment

Pre-Requisite

- > Programming at the Hardware Software Interface
- Computer Organization
- > The students are expected to be comfortable in
 - Unix/Linux environment
 - Circuits

Textbooks

> Required:

Edward A. Lee and Sanjit A. Seshia, "Introduction to Embedded Systems, A Cyber-Physical Systems Approach", Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017, available for download [http://leeseshia.org/]

Highly Recommended:

 Derek Molloy, "Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux", Wiley, ISBN 978-1-119-18868-1, 2016.

> Reference:

- Rajeev Alur, "Principles of Cyber-Physical Systems", MIT Press
- Danda B. Rawat, Joel J.P.C. Rodrigues, Ivan Stojmenovic, "Cyber-Physical Systems: From Theory to Practice", CRC Press

Slides in this course will be taken from these books.

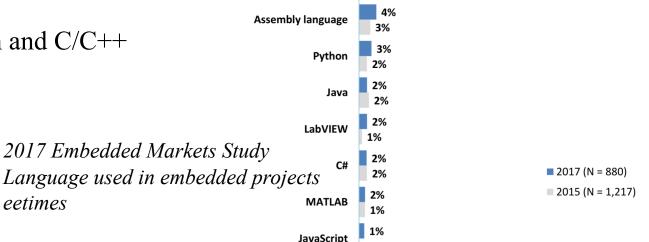
Assignments & Grading

Assignments

- No late assignments will be accepted.
- All assignments are due by 11:59PM on the due date in Blackboard.
- Re-grading requests will be considered up to 5 business days after posting the grades for the corresponding assignment.

Grading

- Labs (Pre and post-completion) 10%
- Homeworks 15%
- Midterm 25%
- Final Exam 25%
- Project Proposal 5%
- Final Project 20%
 - o [Model: 20%, Design 20%, Analysis 20%, Written Report 20%, Final Presentation 20%]



Components

- ➤ About 4-6 homeworks
- Weekly Lab Assignments
- ➤ Midterm Written, closed book
- > Final Written, closed book
 - Dec 3: 10:30AM-12:30PM
- Project (details in later slides)

Lab

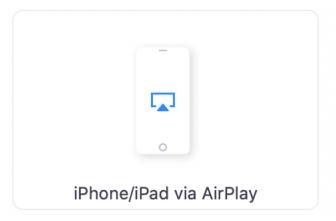
- > Hardware:
 - Purchase Raspberry Pi Kit
 - Purchase Sensor Kit (Adeept or Amazon)
 - Use Lab Manual to setup Headless Raspberry Pi
- > Software:
 - Bash script, Python and C/C++
 - Raspberry Pi OS

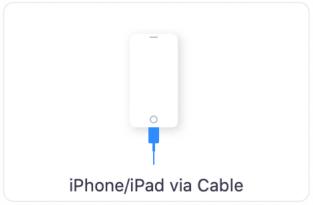
C

C++

22%

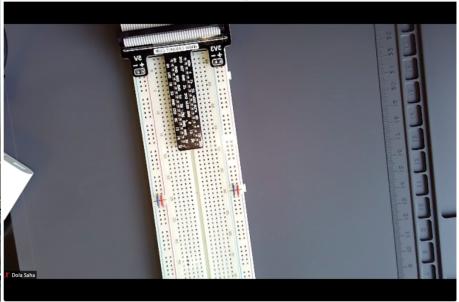
19%


56%


66%

Share Phone Screen

- > To show the circuit design, share phone screen
 - iPhone user (Share through Zoom)



Android user (use DroidCam)

Lab and Lab Assignment

Setup your phone to show the circuit before the lab beginsView in Zoom

Project

- > This is not a research project
- Expected to use model, design and analysis (not just design)
- Discuss with instructor for technical plan with realistic timelines

Project Hardware

> Set of components from your lab kit

Project Ideas

- https://www.raspberrypi.org/magpi/
- https://blog.adafruit.com/category/raspberry-pi/

Project Samples

- Project Report
 - https://www.albany.edu/faculty/dsaha/teach/2020Fall ECE55
 3/resources/sample project report.pdf
- Project Presentation
 - https://www.albany.edu/faculty/dsaha/teach/2020Fall ECE55
 3/resources/sample project ppt.pdf

Grading Scale

- > A: 100-95 points A-: 94-90 points
- ➤ B+: 89-87 points B: 86-84 points B-: 83-80 points

- > C+: 79-77 points C: 76-73 points C-: 72-70 points
- > D+: 69-67 points D: 66-63 points D-: 62-60 points

> E: 59 points and below

Difference between 453 and 553

- > Extra problems in homework
- > Extra problems in lab
- > Extra problems in midterm
- > Extra problems in finals

Academic Integrity

- Standards of Academic Integrity
 - https://www.albany.edu/studentconduct/27179.php
- Academic Dishonesty
 - Plagiarism, Cheating on examinations, unauthorized collaboration, etc.
- Practicing Academic Integrity
 - Citation
- Penalties for Violation
 - Zero in the assignment, lowering grade, failing grade, VAIR will be submitted
 - You can appeal to the department committee

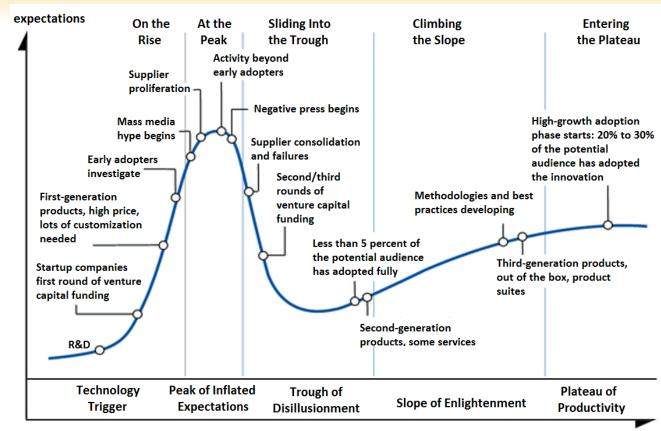
What is Plagiarism?

- > Getting help from the Internet and not cite it
- > Asking someone else to write the code for you
- ➤ Copying your friend's code both the students are involved in plagiarism

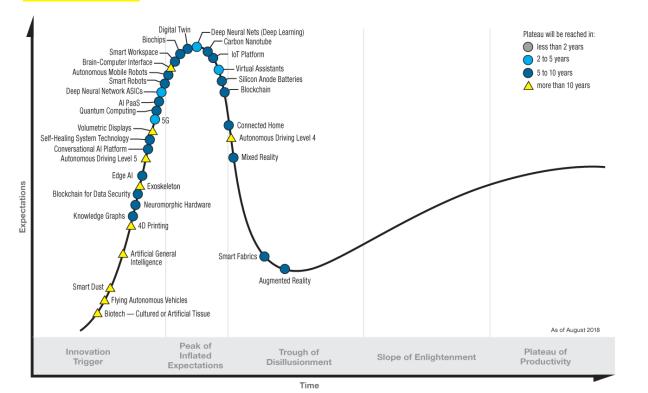
In Class Decorum

- > Same discipline, etiquette, respect and professionalism from each of you as in regular in-person lectures
- > No use of phones
- > Computers will be used during lab session
- > DO NOT browse random things in class
- > No crosstalk

Attendance

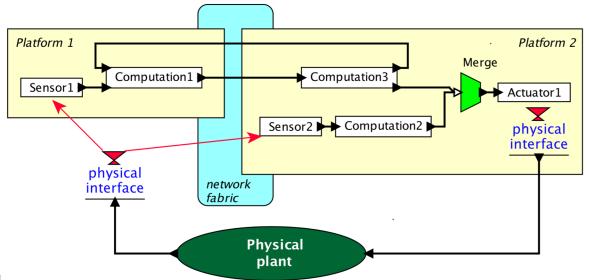

- > Attendance is required
- Webcam turned on
- > Microphone turned on (during disussion)

Why this course?


Hype Cycle

gartner.com

Hype Cycle 2018


Hype Cycle for Emerging Technologies, 2018

About the Term

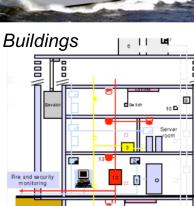
The term "cyber-physical systems" emerged in 2006, coined by Helen Gill at the National Science Foundation in the US.

NSF's Definition of CPS

- > Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the *seamless integration* of computation and physical components.
- Advances in CPS will *enable* capability, adaptability, scalability, resiliency, safety, security, and usability that will expand the horizons of these critical systems.
- > CPS technologies are *transforming the way people interact* with engineered systems, just as the Internet has transformed the way people interact with information.

Application Domains — major societal impact

Agriculture, Aeronautics, Building design, Civil infrastructure, energy, environmental quality, healthcare and personalized medicine, Manufacturing, and transportation.

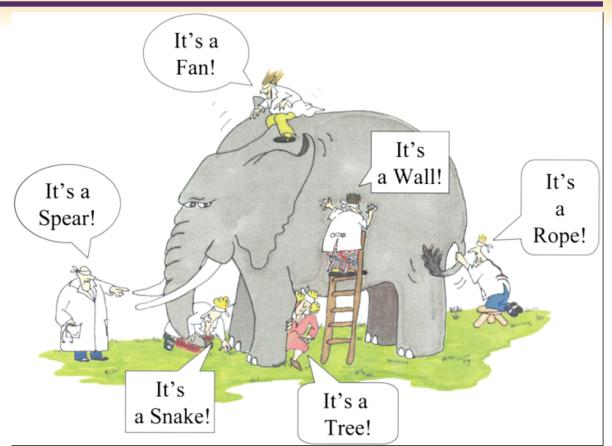

CPS

- Cyber + Physical
- > Computation + Dynamics + Communication
- > Security + Safety

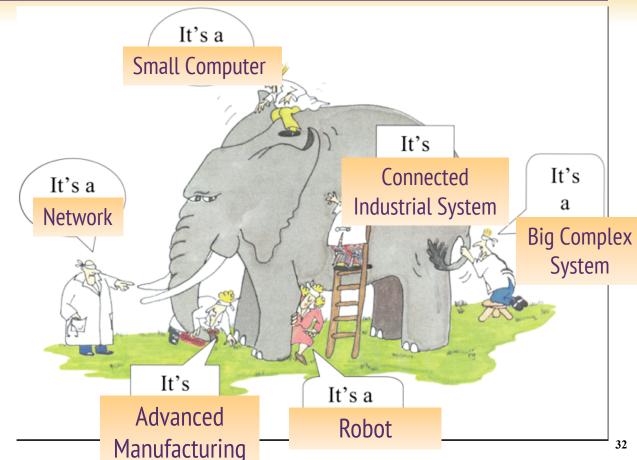
Manufacturing

Automotive

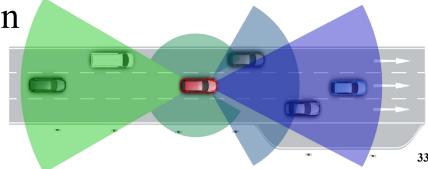
Biomedical



Contradictions in CPS

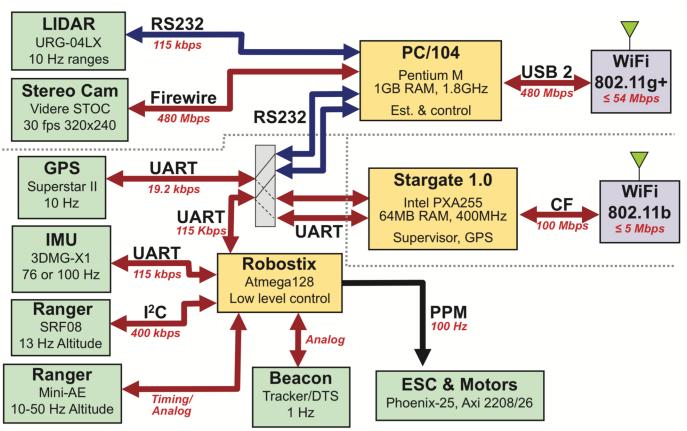

- > Adaptability vs. Repeatability
- > High connectivity vs. Security and Privacy
- > High performance vs. Low Energy
- > Asynchrony vs. Coordination/Cooperation
- Scalability vs. Reliability and Predictability
- > Laws and Regulations vs. Technical Possibilities
- > Economies of scale (cloud) vs. Locality (fog)
- Open vs. Proprietary
- > Algorithms vs. Dynamics

Challenges of Working in a Multidisciplinary Area


Challenges of Working in a Multidisciplinary Area

Automotive CPS

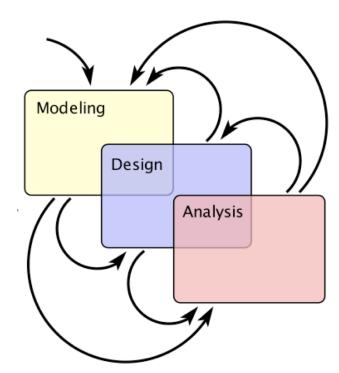
- Safer Transportation
- > Reduced Emissions
- > Smart Transportation
- > Energy Efficiency
- Climate Change
- ➤ Human-Robot Collaboration



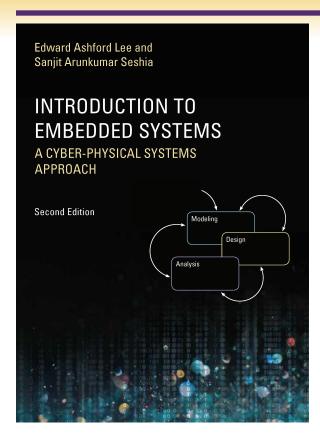
Example CPS System

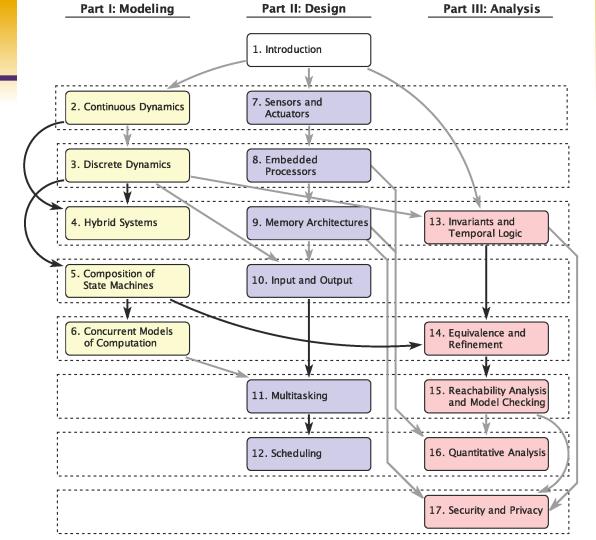
> STARMAC Quadrotor Aircraft

STARMAC Design Block



What is this course about?


- ➤ A scientific structured approach to designing and implementing embedded systems
- > Not just hacking and implementing
- > Focus on model-based system design, on embedded hardware and software


Model, Design & Analysis

- > Modeling is the process of gaining a deeper understanding of a system through imitation. Models specify what a system does.
- > Design is the structured creation of artifacts. It specifies how a system does what it does. This includes optimization.
- Analysis is the process of gaining a deeper understanding of a system through dissection. It specifies why a system does what it does (or fails to do what a model says it should do).

Textbook

