Modern Wireless Networks

1

Introduction

ICEN 574– Spring 2019 Prof. Dola Saha

Introductions

Instructor

- Prof. Dola Saha, PhD University of Colorado Boulder
- http://www.albany.edu/faculty/dsaha/
- https://www.albany.edu/wwwres/facultyresearch/mesalabs/
- dsaha@albany.edu

Information

- Course Website:
 - https://www.albany.edu/faculty/dsaha/teach/2019Spring_CEN574/2019Spring_CEN574.ht ml
- Blackboard:
 - https://blackboard.albany.edu/

Course Website	Blackboard
Lecture Slides	Lab Assignments / Pre-Lab
Class Calendar / Schedule	Homework Assignments / Submission / Solution
Other Information	Announcements
	Grades

Office Hours

Instructor

LI 88B

```
Tuesday – 12:00-1:00pm
```

Thursday – 12:00-1:00pm

By appointment

Pre-Requisite

- ICEN 472 Advanced Digital Communications
- ICEN 416 Computer Communication Networks
- > The students are expected to be comfortable in
 - MATLAB
 - Unix/Linux environment

Textbooks

- > Required:
 - None
- Highly Recommended:
 - Erik Dahlman, Stefan Parkvall and Johan Skold, "5G NR: The Next Generation Wireless Access Technology", First Edition, Elsevier, ISBN: 978-0-128-14323-0, 2018.
 - Eldad Perahia and Robert Stacey, "Next Generation Wireless LANs: 802.11n and 802.11ac", Second Edition, Cambridge University Press, ISBN: 9781107016767, 2013.
- > Reference:
 - 3GPP Documents
 - IEEE Standards for Wireless LANs

Slides in this course will be taken from these books. UNIVERSITY AT ALBANY State University of New York

Assignments & Grading

- > Assignments
 - 4 Short Projects
- ➢ Grading
 - Each Short Project 25%

Grading Scale

- > A: 100-95 points A-: 94-90 points
- > B+: 89-87 points B: 86-84 points B-: 83-80 points

- > C+: 79-77 points C: 76-73 points C-: 72-70 points
- > D+: 69-67 points D: 66-63 points D-: 62-60 points
- > E: 59 points and below

Academic Integrity

- Undergraduate Academic Regulations
 - http://www.albany.edu/undergraduate_bulletin/regulations.html
- > Academic Dishonesty
 - Plagiarism, Cheating on examinations, unauthorized collaboration, etc.
- > Practicing Academic Integrity
 - Citation
- > Penalties for Violation
 - Zero in the assignment, lowering grade, failing grade, VAIR will be submitted

What is Plagiarism?

- Getting help from the Internet and not cite it
- > Asking someone else to write the code for you
- Copying your friend's code both the students are involved in plagiarism

In Class Decorum

> No use of phones

- > No use of Computers / laptops
- > Computers will be used only when directed in the class
- > DO NOT browse random things in class
- > No crosstalk
- > No Food/Drink
- > Raise hand to ask questions

Recapitulation of Wireless Communication

	Wireless Physical Layer
Jan 29	Signal, Modulation, Coding, Channel Capacity
Jan 31	Doppler, Coherence Time, DSSS, CDMA, Access Methods
Feb 5	Signal Propagation, Pathloss, Shadowing, Multipath, Channel Models
Feb 7	OFDM, Channel Diversity, Beamforming, MIMO

> 3GPP World – OpenAirInterface for Project

	Cellular Systems
Feb 12	1G/2G/3G Systems, Cell, GSM, CDMA, Handoff
Feb 14	LTE - Architecture, Frame, Synchronization, RACH
Feb 19	OFDM, SC-FDMA, Space Time Coding
Feb 21	Packet Core – S-GW, P-GW
Feb 26	Mobility Management
Feb 28	PDCP, RLC, RRC, Control and Data Channel
Mar 5	Bearer Management, Hybrid ARQ
Mar 7	MU-MIMO, Precoding
Mar 12	Carrier Aggregation, CoMP, D2D
Mar 14	5G (5G NR, LTE for Massive MTC)

Wireless LANs – Dissect Signals from 802.11 devices using SDRs

	Wireless LANs
Mar 26	PHY, MAC, PCF, DCF, IFS, Carrier Sense, Backoff
Mar 28	Synchronization, Association, 802.11a/b/g/n/ac
Apr 2	Enhanced DCF, Frame Aggregation, STBC
Apr 4	Channel Bonding, HT/VHT Frame, Preambles
Apr 9	MU-MIMO, Grouping
Apr 11	Tx Beamforming

> mmWave, Vehicular & IoT Comm – Setup LoRA Testbed

	60GHz mmWave
Apr 16	mmWave propagation and fading, 802.11ad standard
Apr 18	Beamforming protocol, Session transfer
	Vehicular Networks
Apr 23	802.11p, DSRC
Apr 25	Propagation, Routing
	Communication for Internet of Things
Apr 30	Bluetooth, BLE and iBeacon – PHY and MAC
May 2	802.15.4, Zigbee, Cluster Tree Network, UWB, Spread Spectrum
Mar 7	LPWAN – LoRA and SigFox

Why this course?

16

Why this course?

> Prepare you for the industry

1970s – Trunk Call or Long Distance Calling

 8:00AM – Call local exchange to setup a call to India

8:00PM – Transatlantic link setup

A Brief History of the Internet

State University of New York

http://www.internetsociety.org/internet/what-internet/history-internet/brief-history-internet

A Brief History of Wireless Communication

State University of New York

"Design process changes enabling rapid development²⁰

Growth of the Internet

Advent of Smartphone

Wireless Networks Computer Architecture Embedded Systems

Impact on our lives (1)

Impact on our lives (2)

What's next? - Virtual Reality

Examples

- Remote concert
- VR enabled learning in classroom
- Telesurgery
- Requirements
- Very high throughput
- Very low latency (<10ms)

What's next? - Augmented Reality

Internet of Things

> What is different?

Challenges

- Speed of light = 299,792,458m/sec
- Transatlantic Links
 - 15,428 km → 5.1msec
 - 14,000 km → 5msec
 - 24,000 km → 8msec
- > VR Requirement is end-to-end delay
 - <10ms
- > We are limited by Physics!

Future Wireless Frequencies

Different in New Spectrum

- Pathloss / Penetration
- Smaller Antenna Size
- Massive MIMO higher capacity
- > Directional beam spatial reuse
- > Beamforming and Beam tracking
- Handover

Localization

Introduction to Standards

- The 3rd Generation Partnership Project (3GPP) unites [Seven] telecommunications standard development organizations (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC), known as <u>"Organizational Partners</u>" and provides their members with a stable environment to produce the Reports and Specifications that define 3GPP technologies.
- The original scope of 3GPP (1998) was to produce Technical Specifications and Technical Reports for a 3G Mobile System based on evolved GSM core networks and the radio access technologies that they support (i.e., Universal Terrestrial Radio Access (UTRA) both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) modes).

UNIVERSITYATALBANY

State University of New York

Introduction to Standards

IEEE Standards Association

IEEE Standard for Information technology-

Telecommunications and information exchange between systems Local and metropolitan area networks— Specific requirements

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

IEEE Computer Society

Sponsored by the LAN/MAN Standards Committee

IEEE 3 Park Avenue New York, NY 10016-5997 USA

IEEE Std 802.11™-2016 (Revision of IEEE Std 802.11-2012)

