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BIG PICTURE: CPS

SENSORS ACTUATORS

“Essentially, all models are wrong, but some are useful.” 

“Everything is an approximation”

“A CPS system is only as good as the Sensors”

Parts failures
Imperfect actuation

Unknown delaysPacket losses Uncontrollable scheduling

Physical noise

Unknown execution times

Sensor Noise

MODEL

Model Uncertainties



Background Knowledge

• Measurement is a random variable, described by the Probability Density Function (PDF).

• Measurements mean is the Expected Value of the random variable.

• Offset between the measurements mean and the true value is the measurements accuracy (or 
bias or measurement error).

• The dispersion of the distribution is known as precision or (measurement noise or measurement 
uncertainty).

Mean Variance

Measurements- Gaussian

Gaussian PDF



Accuracy & Precision



Kalman Filters

What is a Kalman Filter: 
• A Kalman filter is an optimal estimator – i.e. infers parameters of interest 

from indirect, inaccurate and uncertain observations. It is recursive so that 
new measurements can be processed as they arrive. 

Optimal in what sense: 
• If Noise is Gaussian: the Kalman filter minimizes the mean square error of the 

estimated parameters.
• If Noise is NOT Gaussian: Kalman filter is still the best linear estimator. Non-

linear estimators may be better. 
• Gauss-Markov Theorem – Optimal among all Linear, Unbiased Estimators
• Rao–Blackwell theorem – Optimal among Non-linear Estimators with Gaussian Noise



Kalman Filters…

An Estimator: Optimal under Linear or Gaussian and is On-Line.

Why is Kalman Filtering so popular:
• Good results in practice due to optimality and structure. 
• Convenient form for online real time processing. 
• Easy to formulate and implement given a basic understanding.
• Measurement equations need not be inverted.

Why use the word “Filter” 
• The process of finding the “best estimate” from noisy data amounts to 

“filtering out” the noise. 
• Kalman filter doesn’t just clean up the data measurements, but also projects 

them onto the state estimate.



Kalman Filter: Smoothing, Filtering, Prediction

• Additional Reading and Acknowledgements:
• https://www.kalmanfilter.net/

• https://www.mathworks.com/videos/series/understanding-kalman-filters.html

• http://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf

• Real-time optimal estimation is desired when new data Arrives
• Smoothing (Take advantage of noise reduction)

• Filtering 

• Prediction (extrapolate based on model)
• Applications: controllers, tracking, etc.

https://www.kalmanfilter.net/
https://www.mathworks.com/videos/series/understanding-kalman-filters.html
http://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman filter.pdf


Kalman Filter: Mechanism

• Required: 1. System Model and 2. Observations.

• Model may be uncertain, Measurements may be Noisy

• Prediction-correction framework: Optimal combination of system 
model and observations





Intuition: State Observer: Estimating state of a Rocket

https://www.mathworks.com/videos/series/understanding-kalman-filters.html

https://www.mathworks.com/videos/series/understanding-kalman-filters.html


Kalman Filter
Stochastic Processes 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣

Ƹ𝑧𝑘 = 𝐻ො𝑥𝑘



𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣



• Measurement of a single point z1

• Variance s1
2 (uncertainty s1)

• Best estimate of true position 

• Uncertainty in best estimate
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Simple Example: Data Acquisition Intuition

• Second measurement z2, variance s2
2

• Best estimate of true position?

z1 z2

• Second measurement z2, variance s2
2

• Best estimate of true position: weighted 
average 

• Uncertainty in best estimate
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Minimum Variance Estimator



State Space Representation

• For “standard” Kalman filtering, everything must be linear

System model: 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢 + 𝑤
• The matrix A is state transition matrix
• The matrix B is input matrix
• The vector w represents additive noise, assumed to have covariance Q

Measurement model: 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣
• Matrix C is measurement matrix
• The vector v is measurement noise, assumed to have covariance R

• Best estimate of state ො𝑥 with covariance P

Further Reading: http://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf

http://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf


Prediction/Correction

• Prediction: of new state (Ignoring input u)

• Correction: To Account for new measurements

Kalman Gain: Weighting of process model vs. measurements

𝑥𝑘
′ = 𝐴ො𝑥𝑘−1
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prediction of new state based on passed state
predicted observation
new observation
new estimate of state
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Pk is the error covariance matrix at time k



Kalman Filter Definition: For 1-D Case

Further Reading: https://www.kalmanfilter.net/kalman1d.html

https://www.kalmanfilter.net/kalman1d.html


Kalman Filter: Systematic View



The Kalman Gain Intuition: For 1D Case

HIGH KALMAN GAIN LOW KALMAN GAIN



Example 1: Estimating Temperature of Liquid in Tank
Numerical Example

For Further Details: https://www.kalmanfilter.net/kalman1d.html

https://www.kalmanfilter.net/kalman1d.html


ITERATION ZERO

• INITIALIZATION

• PREDICTION

FIRST ITERATION
• STEP 1 - MEASURE

• STEP 2 - UPDATE

• STEP 3 - PREDICT

SECOND ITERATION
• STEP 1 - MEASURE

• STEP 2 - UPDATE

• STEP 3 - PREDICT



Estimating Temperature of Liquid in Tank



EXAMPLE 2: AIRPLANE CONSTANT ACCELERATION MODEL
Determining The State Space Mode

Estimated State Vector Control vector

State transition matrix Control Matrix



The state extrapolation equation is:

The matrix multiplication results:



Sensor Fusion

Vector of multiple measurements



Comparison: Position-Only vs Position-Velocity Model

Position-Only Model

[Welch & Bishop]

Position-Velocity Model

E.g., GPS position measurements E.g., GPS position + Odometer speed



Example 3: Pendulum Equation of Motion
Determining a Linear State Space Representation

For Small Angles Non-Linear Linear

Dynamic Model



Pendulum Equation of Motion

Dynamic ModelDefining States

System Matrices



Who said Life is Linear?



Non-linear Estimation

Gaussian Gaussian

Gaussian Non-Gaussian

Kalman Filters are optimal for Linear, Gaussian Systems

Extended Kalman Filter
Unscented Kalman Filter





Gaussian Gaussian

Non-Gaussian Estimation



Comparison



Applications

Large Kalman filter system: 

Including trajectories of 24+ 

satellites, drift rates and phases 

of all system clocks, and 

parameters related to 

atmospheric propagation delays 

with time and location

For prolonging life of wind 

turbines by detecting wind 

anomalies (wind shear, extreme 

gusts) utilizing an EKF for 

regression analysis.

Forecast model. Uses an 

Ensemble Kalman filter which 

throws out bad data that would 

result in a poor forecast.”

GPS Tracking Wind-Mill Tracking Weather forecasting



Applications

In VR, predictive tracking is used 

to forecast the position of an 

object and its trajectory.

Improves efficiency of ADAS and 
makes vehicle control operations like 

blind spot detection, stability and 
traction control, lane departure 

detection and automatic braking in 
emergency situations a lot safer and 

more effective

Forecast model. Uses an 

Ensemble Kalman filter which 

throws out bad data that would 

result in a poor forecast.”

GPS Tracking Advanced Driver Assistance 
Systems (ADAS)

Weather forecasting


