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Introduction to Microcontrollers
Ø A microcontroller (MCU) is a small computer 

on a single integrated circuit consisting of a 
relatively simple central processing unit 
(CPU) combined with peripheral devices such 
as memories, I/O devices, and timers.

§ By some accounts, more than half of all CPUs sold 
worldwide are microcontrollers. 

§ Such a claim is hard to substantiate because the 
difference between microcontrollers and general-
purpose processors is indistinct. 
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Microcontrollers
Ø An Embedded Computer System on a Chip
§ A CPU
§ Memory (Volatile and Non-Volatile)
§ Timers
§ I/O Devices

Ø Typically intended for limited energy usage
§ Low power when operating plus sleep modes

Ø Where might you use a microcontroller?
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What is Control?
Ø Sequencing operations
§ Turning switches on and off

Ø Adjusting continuously (or at least finely) variable 
quantities to influence a process
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Microcontroller vs Microprocessor
Ø A microcontroller is a small computer on a single 

integrated circuit containing a processor core, memory, 
and programmable input/output peripherals.

Ø A microprocessor incorporates the functions of a 
computer’s central processing unit (CPU) on a single 
integrated circuit.
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Microcontroller vs Microprocessor
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Types of Processors
Ø In general-purpose computing, the variety of instruction set 

architectures today is limited, with the Intel x86 architecture 
overwhelmingly dominating all. 

Ø There is no such dominance in embedded computing. On the 
contrary, the variety of processors can be daunting to a system 
designer. 

Ø Do you want same microprocessor for your watch, autonomous 
vehicle, industrial sensor?
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How to choose micro-processors/controllers?
Ø Things that matter
§ Peripherals
§ Concurrency & Timing
§ Clock Rates
§ Memory sizes (SRAM & flash)
§ Package sizes
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Types of Microcontrollers
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DSP Processors
Ø Processors designed specifically to support numerically 

intensive signal processing applications are called DSP 
processors, or DSPs (digital signal processors). 

Ø Signal Processing Applications: interactive games; radar, 
sonar, and LIDAR (light detection and ranging) imaging 
systems; video analytics (the extraction of information from 
video, for example for surveillance); driver-assist systems for 
cars; medical electronics; and scientific instrumentation. 
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A Common Signal Processing Algorithm
Ø finite impulse response (FIR) filtering
Ø N is the length of the filter
Ø ai are tap values  
Ø x(n) is the input 𝑦 𝑛 = $

%&'

()*

𝑎%𝑥(𝑛 − 𝑖)

FIR Filter Formula
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FIR Filter Implementation
Ø z-1 is unit delay
Ø Suppose N = 4 and a0 = a1 = a2 = a3 = 1/4. 
Ø Then for all n ∈ N, 

y(n) = (x(n) + x(n − 1) + x(n − 2) + x(n − 3))/4 . 

Ø Multiply-Accumulate

Tapped delay line implementation of the FIR filter 
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Multiply-Accumulate Instructions
Ø Digital Signal Processors provide a fast and efficient multiply-

accumulate (MAC) instruction
§ Typically including a relatively large accumulator

Ø They also typically use a Harvard memory access architecture
Ø They may include auto-increment addressing modes
Ø They may support circular buffer addressing
§ Efficient implementation of delay lines

Ø They may support zero-overhead loops
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Digital Filter Critique
Ø The filter pole is at about ¼ of the sampling rate
§ We have only 4 samples of the impulse response
§ This makes the FIR filter simple: only 4 taps
§ This also degrades the filter performance

Ø We may be able to improve the filter performance some by 
using a different design technique

§ The filter coefficients would differ

Ø A higher sampling rate with respect to the filter corner 
frequency could also help
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FIR Filter Delay Implementation
Ø Circular Buffer
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Programmable Logic Controller (PLC)
Ø A microcontroller system for industrial automation
§ Continuous operation
§ Hostile environments
§ originated as replacements for control circuits using electrical relays to 

control machinery 

Ø PLCs are frequently programmed using ladder logic
§ This notation was developed to specify logic constructed with relays and 

switches
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Ladder Logic & Relays
Ø Relay is a switch where the contact is 

controlled by coil. 
Ø When a voltage is applied to the coil, 

the contact closes, enabling current to 
flow through the relay. 

Ø By interconnecting contacts and coils, 
relays can be used to build digital 
controllers that follow specified 
patterns. 

Ø Vertical Rails &
Horizontal Rungs

Ø Contact: two vertical 
bars

Ø Coil: circle
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Example

Power Rail Ground Rail
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Example: explained
Ø Start/Run is a normally open contact
Ø Stop is normally closed, indicated by the slash
§ It becomes open when the operator pushes the switch. 

Ø When start is pushed, electricity flows
§ Both Start and Run contacts close so that Motor runs
§ When Start is released, Motor continues to run
§ When Stop is pressed, current is interrupted and both Run contacts become open and 

motor stops

Ø Contacts wired in parallel perform a logical OR function, and 
contacts wired in series perform a logical AND. 
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GPUs
Ø A graphics processing unit (GPU) is a specialized processor 

designed especially to per- form the calculations required 
in graphics rendering. 

Ø Most used for Gaming (earlier days)
Ø Common programming language: CUDA
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Parallelism vs Concurrency
Ø Embedded computing applications typically do more than 

one thing “at a time.”
Ø Tasks are said to be “concurrent” if they conceptually 

execute simultaneously
Ø Tasks are said to be “parallel” if they physically execute 

simultaneously
§ Typically multiple servers at the same time
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Imperative Language
Ø Non-concurrent programs specify a sequence of 

instructions to execute. 
Ø Imperative Language: expresses a computation as a 

sequence of operations
§ Example: C, Java

Ø How to write concurrent programs in imperative 
language?

§ Thread Library
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Program Dependency – Sequential Consistency
Ø No dependency 

between lines 3 and 4

Ø Line 4 is dependent on 
Line 3
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Thread Mapping on Processor
Ø OS Dependent Scheduler
§ Static Mapping
§ Basic Lowest Load (fill in Round Robin fashion)
§ Extended Lowest Load
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Performance Improvement
Ø Various current architectures seek to improve performance 

by finding and exploiting potentials for parallel execution
§ This frequently improves processing throughput
§ It does not always improve processing latency
§ It frequently makes processing time less predictable

Ø Many embedded applications rely on results being 
produced at predictable regular rates

§ Embedded results must be available at the right time
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Parallelism
Ø Temporal Parallelism – Pipelining
Ø Spatial Parallelism –
§ Superscalar (instruction and data level parallelism)
§ VLIW
§ Multicore
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RISC and CISC Architectures
Ø CISC – Complex Instruction Set Computer
§ Multi-clock complex instructions

Ø RISC – Reduced Instruction Set Computer
§ Simple instructions that can be executed within one cycle
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5 Cycles of RISC Instruction Set
Ø Instruction fetch cycle (IF)
§ Fetch instruction from memory pointed by PC, then increment PC

Ø Instruction decode/register fetch cycle (ID)
§ Decode the instruction

Ø Execution/effective address cycle (EX)
§ ALU operates on the operands

Ø Memory access (MEM)
§ Load/Store instructions

Ø Write-back cycle (WB) 
§ Register-Register ALU instruction 
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Pipelining in RISC
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Simple RISC Pipeline
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Pipelining Hazard
Ø Data Hazard (RAW (read after write) , WAW (write after 

write) , WAR (write after read) )
§ Pipeline bubble (no op)
§ Interlock
§ Out-of-order Execution

Ø Control Hazard
§ Out-of-order Execution
§ Speculative Execution
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Interlocks
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CISC
Ø DSPs are typically CISC machines
Ø Instructions support 
§ FIR filtering
§ FFTs
§ Viterbi decoding
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FIR Filter Implementation
Ø z-1 is unit delay
Ø Suppose N = 4 and a0 = a1 = a2 = a3 = 1/4. 
Ø Then for all n ∈ N, 

y(n) = (x(n) + x(n − 1) + x(n − 2) + x(n − 3))/4 . 

Ø Multiply-Accumulate

Tapped delay line implementation of the FIR filter 



37

CISC Instruction 
Ø Texas Instruments TMS320c54x family of DSP processors 
Ø Code
§ RPT numberOfTaps - 1 
§ MAC *AR2+, *AR3+, A 

Ø RPT: zero overhead loops
Ø MAC : Multiply accumulate 
§ a := a + x ∗ y 
§ AR2, AR3 are registers
§ A is the Accumulator
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Symmetric FIR Filter
Ø Coefficients of FIR Filter is often symmetric 
§ 𝑁 = 2, 𝑎% = 𝑎()%)*

Ø If hardware has two ALUs, it can be used
Ø Requires half the time

Example DSP Library from TI: 
http://processors.wiki.ti.com/index.php/C674x_DSPLIB
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VLIW Instruction Set
Ø Used for DSP, other 

Embedded Applications
Ø Multiple independent 

instructions per cycle, 
packed into single large 
"instruction word" or 
"packet" 
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Multicore Architecture
Ø Combination of several processors in a single chip
Ø Real-time and Safety critical tasks can have dedicated 

processors
Ø Heterogeneous multicore
§ CPU and GPUs together
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FPGAs
Ø Field Programmable Gate Arrays
§ Set of logic gates and RAM blocks
§ Reconfigurable / Programmable
§ Precise timing

Ø System on Chip design

Zync
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Bits to represent data
Ø Range and Resolution Tradeoff
§ More bits
o Better precision
o More flip-flops

§ Fewer bits
o Less precision
o Fewer flip-flops è lower footprint, lower power

Ø Fixed Point Representation
§ Simulation required for the complete design for dynamic range of parameters
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Fixed and Floating Point Numbers
Ø Programs may use float or double
Ø Many embedded processors do not have floating point 

arithmetic hardware
Ø Conversion required, which makes it slow
Ø Imaginary Binary Point is considered for computation
§ Binary point separates bits
§ Decimal point separates digits

Ø Format x.y representation indicates
§ x bits left & y bits right of binary point
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Fixed Point Numbers
Ø 𝟎𝟏𝟏𝟎𝟏. 𝟏𝟎𝟏9
Ø = 1×2< + 1×29 + 1×2' + 1×2)* + 1×2)<

Ø = 13.625

𝒇 = 𝑨𝒉 + 𝑨𝒍×𝟐)𝒏

10101.1019 = 𝐴I + 𝐴J×2)<

= 21 + 5×2)<

= 21.625

m bits n bits

Radix point

Integer Fraction

hA lA
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Unsigned Fixed Point Representation
Ø Example: Convert  𝑓 = 3. 141593 to unsigned fixed-point UQ4.12 

format.

Ø Calculate 𝑓×2*9 = 12867.964928
Ø Round the result to an integer, 𝑟𝑜𝑢𝑛𝑑 12867.964928 = 12868
Ø Convert the integer to binary: 12868 = 11_0010_0100_01002

Ø Organize into UQ4.12: 0011.0010_0100_01002

Ø Final result in Hex: 0x3244

Ø Error: *9TUT
9VW

− 𝑓 = −8.5625×10)U
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Signed Fixed Point Representation
m bits n bits

Radix point

s

Sign bit

𝑨 = −𝟏×𝒃𝑵)𝟏×𝟐𝑵)𝟏 +$
𝒊&𝟎

𝑵)𝟐
𝒃𝒊×𝟐𝒊

where 𝑁 = 𝑚 + 𝑛 + 1

𝒇 =
𝑨
𝟐𝒏
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Signed Fixed Point Representation
Ø Example: Convert  𝑓 = −3. 141593 to signed fixed-point Q3.12 format.

Ø Calculate 𝑓×2*9 = −12867.964928
Ø Round the result to an integer, 𝑟𝑜𝑢𝑛𝑑 −12867.964928 = −12868
Ø Convert the absolute integer to binary: 12868 = 11_0010_0100_01002

(Note that the integer is represented in two’s complement.)
Ø Make the result into 16 bits: 0011_0010_0100_01002

Ø Find the two’s complement: 1100_1101_1011_11002

Ø Final result in Hex: 0xCDBC

Ø Error: −*9TUT
9VW

− 𝑓 = 8.5625×10)U
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Range and Resolution
Ø Range of Unsigned Uqm.n (m+n bits)
§ Unsigned integer à 0, 2\]^ − 1
§ Unsigned fixed point à 0, 2\]^ − 1 ×2)^ = 0, 2\ − 2)^

Ø Range of Signed Fixed point Qm.n (m+n+1 bits)
§ Range of signed integers: [−2\]^, 2\]^ − 1]
§ Range of Signed fixed point number:[−2\]^, 2\]^ − 1]×2)^ =
−2\, 2\ − 2)^

Ø Resolution/Precision (UQm.n and Qm.n) = 2)^
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Addition and Subtraction

Assume UQ16.16 𝑓a = 𝑓b + 𝑓c

d
𝐼b = 𝑓b×2*U

𝐼c = 𝑓c×2*U

𝐼a = 𝑓a×2*U
d
𝑓b = 𝐼b×2)*U

𝑓c = 𝐼c×2)*U

𝑓a = 𝐼a×2)*U

𝑓a = 𝑓b + 𝑓c
= 𝐼b×2)*U + 𝐼c×2)*U
= 𝐼b + 𝐼c ×2)*U

𝐼a×2)*U = 𝐼b + 𝐼c ×2)*U

𝐼a = 𝐼b + 𝐼c

𝑓a = 𝑓b − 𝑓c
𝐼a = 𝐼b − 𝐼c

Subtraction

Addition
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Multiplication
𝑓a = 𝑓b×𝑓c
= 𝐼b×2)*U × 𝐼c×2)*U
= 𝐼b×𝐼c ×2)<9

𝑓a = 𝐼a×2)*U

𝐼a = 𝐼b×𝐼c ×2)*U
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Law of Conservation of Bits
Ø When multiplying two x-bit numbers with formats n.m and 

p.q, the result has format (n + p).(m + q)
Ø Processors might support full precision multiplications
Ø Finally need to convert x-bits to data register 
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Fixed Point Multiplication
𝑓a = 𝑓b×𝑓c
= 𝐼b×2)*U × 𝐼c×2)*U
= 𝐼b×𝐼c ×2)<9

𝑓a = 𝐼a×2)*U

𝐼a = 𝐼b×𝐼c ×2)*U
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Overflow Example
Ø Multiply 0.5x0.5
Ø Fixed point representation of 0.5 = 230

Ø Result of Multiplication = 260

Ø Discard higher bits results in error
Ø Remedy: Shift Right before multiply

Ø Result = 0.01, interpreted as 0.25
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Programmers need to guard
Ø Overflow – since higher order bits are discarded
Ø Underflow – due to lower order bits being discarded
Ø Truncation –if bits are chosen before operation
Ø Rounding – rounds to nearest full precision after 

operation 


