
1

Cyber-Physical Systems

Embedded Architecture
IECE 553/453– Fall 2019
Prof. Dola Saha

2

Introduction to Microcontrollers

3

Introduction to Microcontrollers
Ø A microcontroller (MCU) is a small computer

on a single integrated circuit consisting of a
relatively simple central processing unit
(CPU) combined with peripheral devices such
as memories, I/O devices, and timers.

§ By some accounts, more than half of all CPUs sold
worldwide are microcontrollers.

§ Such a claim is hard to substantiate because the
difference between microcontrollers and general-
purpose processors is indistinct.

4

Microcontrollers
Ø An Embedded Computer System on a Chip
§ A CPU
§ Memory (Volatile and Non-Volatile)
§ Timers
§ I/O Devices

Ø Typically intended for limited energy usage
§ Low power when operating plus sleep modes

Ø Where might you use a microcontroller?

5

What is Control?
Ø Sequencing operations
§ Turning switches on and off

Ø Adjusting continuously (or at least finely) variable
quantities to influence a process

6

Microcontroller vs Microprocessor
Ø A microcontroller is a small computer on a single

integrated circuit containing a processor core, memory,
and programmable input/output peripherals.

Ø A microprocessor incorporates the functions of a
computer’s central processing unit (CPU) on a single
integrated circuit.

7

Microcontroller vs Microprocessor

8

Types of Processors
Ø In general-purpose computing, the variety of instruction set

architectures today is limited, with the Intel x86 architecture
overwhelmingly dominating all.

Ø There is no such dominance in embedded computing. On the
contrary, the variety of processors can be daunting to a system
designer.

Ø Do you want same microprocessor for your watch, autonomous
vehicle, industrial sensor?

9

How to choose micro-processors/controllers?
Ø Things that matter
§ Peripherals
§ Concurrency & Timing
§ Clock Rates
§ Memory sizes (SRAM & flash)
§ Package sizes

10

Types of Microcontrollers

11

DSP Processors
Ø Processors designed specifically to support numerically

intensive signal processing applications are called DSP
processors, or DSPs (digital signal processors).

Ø Signal Processing Applications: interactive games; radar,
sonar, and LIDAR (light detection and ranging) imaging
systems; video analytics (the extraction of information from
video, for example for surveillance); driver-assist systems for
cars; medical electronics; and scientific instrumentation.

12

A Common Signal Processing Algorithm
Ø finite impulse response (FIR) filtering
Ø N is the length of the filter
Ø ai are tap values
Ø x(n) is the input 𝑦 𝑛 = $

%&'

()*

𝑎%𝑥(𝑛 − 𝑖)

FIR Filter Formula

13

FIR Filter Implementation
Ø z-1 is unit delay
Ø Suppose N = 4 and a0 = a1 = a2 = a3 = 1/4.
Ø Then for all n ∈ N,

y(n) = (x(n) + x(n − 1) + x(n − 2) + x(n − 3))/4 .

Ø Multiply-Accumulate

Tapped delay line implementation of the FIR filter

14

Multiply-Accumulate Instructions
Ø Digital Signal Processors provide a fast and efficient multiply-

accumulate (MAC) instruction
§ Typically including a relatively large accumulator

Ø They also typically use a Harvard memory access architecture
Ø They may include auto-increment addressing modes
Ø They may support circular buffer addressing
§ Efficient implementation of delay lines

Ø They may support zero-overhead loops

15

Comparison

0.1

1

10 100 1000

A
m
pl
itu
de

Frequency

Frequency Response Comparison

Digital
Analog

16

Digital Filter Critique
Ø The filter pole is at about ¼ of the sampling rate
§ We have only 4 samples of the impulse response
§ This makes the FIR filter simple: only 4 taps
§ This also degrades the filter performance

Ø We may be able to improve the filter performance some by
using a different design technique

§ The filter coefficients would differ

Ø A higher sampling rate with respect to the filter corner
frequency could also help

17

FIR Filter Delay Implementation
Ø Circular Buffer

18

Programmable Logic Controller (PLC)
Ø A microcontroller system for industrial automation
§ Continuous operation
§ Hostile environments
§ originated as replacements for control circuits using electrical relays to

control machinery

Ø PLCs are frequently programmed using ladder logic
§ This notation was developed to specify logic constructed with relays and

switches

19

Ladder Logic & Relays
Ø Relay is a switch where the contact is

controlled by coil.
Ø When a voltage is applied to the coil,

the contact closes, enabling current to
flow through the relay.

Ø By interconnecting contacts and coils,
relays can be used to build digital
controllers that follow specified
patterns.

Ø Vertical Rails &
Horizontal Rungs

Ø Contact: two vertical
bars

Ø Coil: circle

20

Example

Power Rail Ground Rail

Rung 0

Rung 1

Start

Run

Run Motor

Run

Stop

21

Example: explained
Ø Start/Run is a normally open contact
Ø Stop is normally closed, indicated by the slash
§ It becomes open when the operator pushes the switch.

Ø When start is pushed, electricity flows
§ Both Start and Run contacts close so that Motor runs
§ When Start is released, Motor continues to run
§ When Stop is pressed, current is interrupted and both Run contacts become open and

motor stops

Ø Contacts wired in parallel perform a logical OR function, and
contacts wired in series perform a logical AND.

22

GPUs
Ø A graphics processing unit (GPU) is a specialized processor

designed especially to per- form the calculations required
in graphics rendering.

Ø Most used for Gaming (earlier days)
Ø Common programming language: CUDA

23

Parallelism vs Concurrency
Ø Embedded computing applications typically do more than

one thing “at a time.”
Ø Tasks are said to be “concurrent” if they conceptually

execute simultaneously
Ø Tasks are said to be “parallel” if they physically execute

simultaneously
§ Typically multiple servers at the same time

24

Imperative Language
Ø Non-concurrent programs specify a sequence of

instructions to execute.
Ø Imperative Language: expresses a computation as a

sequence of operations
§ Example: C, Java

Ø How to write concurrent programs in imperative
language?

§ Thread Library

25

Program Dependency – Sequential Consistency
Ø No dependency

between lines 3 and 4

Ø Line 4 is dependent on
Line 3

26

Thread Mapping on Processor
Ø OS Dependent Scheduler
§ Static Mapping
§ Basic Lowest Load (fill in Round Robin fashion)
§ Extended Lowest Load

27

Performance Improvement
Ø Various current architectures seek to improve performance

by finding and exploiting potentials for parallel execution
§ This frequently improves processing throughput
§ It does not always improve processing latency
§ It frequently makes processing time less predictable

Ø Many embedded applications rely on results being
produced at predictable regular rates

§ Embedded results must be available at the right time

28

Parallelism
Ø Temporal Parallelism – Pipelining
Ø Spatial Parallelism –
§ Superscalar (instruction and data level parallelism)
§ VLIW
§ Multicore

29

RISC and CISC Architectures
Ø CISC – Complex Instruction Set Computer
§ Multi-clock complex instructions

Ø RISC – Reduced Instruction Set Computer
§ Simple instructions that can be executed within one cycle

30

5 Cycles of RISC Instruction Set
Ø Instruction fetch cycle (IF)
§ Fetch instruction from memory pointed by PC, then increment PC

Ø Instruction decode/register fetch cycle (ID)
§ Decode the instruction

Ø Execution/effective address cycle (EX)
§ ALU operates on the operands

Ø Memory access (MEM)
§ Load/Store instructions

Ø Write-back cycle (WB)
§ Register-Register ALU instruction

31

Pipelining in RISC

PC

In
st

ru
ct

io
n

m
em

or
y

M
ux

Ad
d

4

fetch decode execute memory writeback

Re
gi

st
er

ba
nk

M
ux

AL
U

D
ec

od
e Ze

ro
?

branch
taken

control hazard (conditional branch)
data hazard (computed branch)

da
ta

m
em

or
y

M
ux

data hazard (memory read or ALU result)

32

Simple RISC Pipeline

33

Pipelining Hazard
Ø Data Hazard (RAW (read after write) , WAW (write after

write) , WAR (write after read))
§ Pipeline bubble (no op)
§ Interlock
§ Out-of-order Execution

Ø Control Hazard
§ Out-of-order Execution
§ Speculative Execution

34

Interlocks

instruction memory
register bank read 1

ALU
data memory

A

register bank read 2

register bank write

A
A

A
A

A

cycle
1 2 3 4 5 6 7 8

B
B
B

B
B

B

C
C
C

C
C

C

D
D
D

D
D

D

hardware resources:
E

E
E

E
E

E

9

instruction memory
register bank read 1

ALU
data memory

A

register bank read 2

register bank write

A
A

A
A

A

cycle
1 2 3 4 5 6 7 8

B
B
B

B
B

B

C
C
C

C
C

C

D
D
D

D
D

D

hardware resources:
E

E
E

E
E

E

9 10 11 12

in
te

rlo
ck

Reservation Table Reservation Table with
Interlocks

instruction B reads a register written by instruction A

35

CISC
Ø DSPs are typically CISC machines
Ø Instructions support
§ FIR filtering
§ FFTs
§ Viterbi decoding

36

FIR Filter Implementation
Ø z-1 is unit delay
Ø Suppose N = 4 and a0 = a1 = a2 = a3 = 1/4.
Ø Then for all n ∈ N,

y(n) = (x(n) + x(n − 1) + x(n − 2) + x(n − 3))/4 .

Ø Multiply-Accumulate

Tapped delay line implementation of the FIR filter

37

CISC Instruction
Ø Texas Instruments TMS320c54x family of DSP processors
Ø Code
§ RPT numberOfTaps - 1
§ MAC *AR2+, *AR3+, A

Ø RPT: zero overhead loops
Ø MAC : Multiply accumulate
§ a := a + x ∗ y
§ AR2, AR3 are registers
§ A is the Accumulator

38

Symmetric FIR Filter
Ø Coefficients of FIR Filter is often symmetric
§ 𝑁 = 2, 𝑎% = 𝑎()%)*

Ø If hardware has two ALUs, it can be used
Ø Requires half the time

Example DSP Library from TI:
http://processors.wiki.ti.com/index.php/C674x_DSPLIB

39

VLIW Instruction Set
Ø Used for DSP, other

Embedded Applications
Ø Multiple independent

instructions per cycle,
packed into single large
"instruction word" or
"packet"

40

Multicore Architecture
Ø Combination of several processors in a single chip
Ø Real-time and Safety critical tasks can have dedicated

processors
Ø Heterogeneous multicore
§ CPU and GPUs together

41

FPGAs
Ø Field Programmable Gate Arrays
§ Set of logic gates and RAM blocks
§ Reconfigurable / Programmable
§ Precise timing

Ø System on Chip design

Zync

42

Bits to represent data
Ø Range and Resolution Tradeoff
§ More bits
o Better precision
o More flip-flops

§ Fewer bits
o Less precision
o Fewer flip-flops è lower footprint, lower power

Ø Fixed Point Representation
§ Simulation required for the complete design for dynamic range of parameters

43

Fixed and Floating Point Numbers
Ø Programs may use float or double
Ø Many embedded processors do not have floating point

arithmetic hardware
Ø Conversion required, which makes it slow
Ø Imaginary Binary Point is considered for computation
§ Binary point separates bits
§ Decimal point separates digits

Ø Format x.y representation indicates
§ x bits left & y bits right of binary point

44

Fixed Point Numbers
Ø 𝟎𝟏𝟏𝟎𝟏. 𝟏𝟎𝟏9
Ø = 1×2< + 1×29 + 1×2' + 1×2)* + 1×2)<

Ø = 13.625

𝒇 = 𝑨𝒉 + 𝑨𝒍×𝟐)𝒏

10101.1019 = 𝐴I + 𝐴J×2)<

= 21 + 5×2)<

= 21.625

m bits n bits

Radix point

Integer Fraction

hA lA

45

Unsigned Fixed Point Representation
Ø Example: Convert 𝑓 = 3. 141593 to unsigned fixed-point UQ4.12

format.

Ø Calculate 𝑓×2*9 = 12867.964928
Ø Round the result to an integer, 𝑟𝑜𝑢𝑛𝑑 12867.964928 = 12868
Ø Convert the integer to binary: 12868 = 11_0010_0100_01002

Ø Organize into UQ4.12: 0011.0010_0100_01002

Ø Final result in Hex: 0x3244

Ø Error: *9TUT
9VW

− 𝑓 = −8.5625×10)U

46

Signed Fixed Point Representation
m bits n bits

Radix point

s

Sign bit

𝑨 = −𝟏×𝒃𝑵)𝟏×𝟐𝑵)𝟏 +$
𝒊&𝟎

𝑵)𝟐
𝒃𝒊×𝟐𝒊

where 𝑁 = 𝑚 + 𝑛 + 1

𝒇 =
𝑨
𝟐𝒏

47

Signed Fixed Point Representation
Ø Example: Convert 𝑓 = −3. 141593 to signed fixed-point Q3.12 format.

Ø Calculate 𝑓×2*9 = −12867.964928
Ø Round the result to an integer, 𝑟𝑜𝑢𝑛𝑑 −12867.964928 = −12868
Ø Convert the absolute integer to binary: 12868 = 11_0010_0100_01002

(Note that the integer is represented in two’s complement.)
Ø Make the result into 16 bits: 0011_0010_0100_01002

Ø Find the two’s complement: 1100_1101_1011_11002

Ø Final result in Hex: 0xCDBC

Ø Error: −*9TUT
9VW

− 𝑓 = 8.5625×10)U

48

Range and Resolution
Ø Range of Unsigned Uqm.n (m+n bits)
§ Unsigned integer à 0, 2\]^ − 1
§ Unsigned fixed point à 0, 2\]^ − 1 ×2)^ = 0, 2\ − 2)^

Ø Range of Signed Fixed point Qm.n (m+n+1 bits)
§ Range of signed integers: [−2\]^, 2\]^ − 1]
§ Range of Signed fixed point number:[−2\]^, 2\]^ − 1]×2)^ =
−2\, 2\ − 2)^

Ø Resolution/Precision (UQm.n and Qm.n) = 2)^

49

Addition and Subtraction

Assume UQ16.16 𝑓a = 𝑓b + 𝑓c

d
𝐼b = 𝑓b×2*U

𝐼c = 𝑓c×2*U

𝐼a = 𝑓a×2*U
d
𝑓b = 𝐼b×2)*U

𝑓c = 𝐼c×2)*U

𝑓a = 𝐼a×2)*U

𝑓a = 𝑓b + 𝑓c
= 𝐼b×2)*U + 𝐼c×2)*U
= 𝐼b + 𝐼c ×2)*U

𝐼a×2)*U = 𝐼b + 𝐼c ×2)*U

𝐼a = 𝐼b + 𝐼c

𝑓a = 𝑓b − 𝑓c
𝐼a = 𝐼b − 𝐼c

Subtraction

Addition

50

Multiplication
𝑓a = 𝑓b×𝑓c
= 𝐼b×2)*U × 𝐼c×2)*U
= 𝐼b×𝐼c ×2)<9

𝑓a = 𝐼a×2)*U

𝐼a = 𝐼b×𝐼c ×2)*U

51

Law of Conservation of Bits
Ø When multiplying two x-bit numbers with formats n.m and

p.q, the result has format (n + p).(m + q)
Ø Processors might support full precision multiplications
Ø Finally need to convert x-bits to data register

52

Fixed Point Multiplication
𝑓a = 𝑓b×𝑓c
= 𝐼b×2)*U × 𝐼c×2)*U
= 𝐼b×𝐼c ×2)<9

𝑓a = 𝐼a×2)*U

𝐼a = 𝐼b×𝐼c ×2)*U

53

Overflow Example
Ø Multiply 0.5x0.5
Ø Fixed point representation of 0.5 = 230

Ø Result of Multiplication = 260

Ø Discard higher bits results in error
Ø Remedy: Shift Right before multiply

Ø Result = 0.01, interpreted as 0.25

54

Programmers need to guard
Ø Overflow – since higher order bits are discarded
Ø Underflow – due to lower order bits being discarded
Ø Truncation –if bits are chosen before operation
Ø Rounding – rounds to nearest full precision after

operation

