

Infant Temperature Monitor

By Amr Abdelhamid and Ethan Webster

Problem Statement

- Proof of concept: analyzing the feasibility of infrared temperature sensor for measuring body heat
- Temperature measurement without direct contact
- Enhanced monitoring system for infants
- Incorporation of multiple sensors and actuators to perform smart monitoring

Model

Conceptual Design

Schematic

- The design consists of:
 - RPi microcontroller
 - D6T infrared sensor
 - DHT11 humidity and temperature sensor
 - Camera
 - Stepper motor

fritzing

Prototype: Main Components

Infrared Sensor: Principles

- **Planck's Radiation Law**: Any object whose temperature is not equal to absolute zero emits radiation.
- Stefan Boltzmann Law: The total energy emitted at all wavelengths by a black body is related to the absolute temperature.
- Wien's Displacement Law: Objects of different temperatures emit spectra that peak at different wavelengths that is inversely proportional to temperature.

Wien's Displacement Law

 $\lambda_{max} = \frac{b}{T}$ where *b* is Wien's displacement constant

Infrared Sensor: Principles

Thermopile: a series of thermocouples Thermal Resistance $\Delta V \propto \Delta T$ $\Delta V \propto q''$ $\Delta V \propto q''$ $\Delta V \propto q''$

 ΔT

D6T Sensor

Silicon Lens Gather radiated infrared on the thermopile MEMS Thermopile Array (1x8 array, 3.2x0.8mm) Infrared **Transduce infrared** Ray light into electrical signal Temperature Conversion Algorithm Convert sensor signal to digital temperature output

D6T: Operation Principle

D6T: Operation Principle

D6T: Operation Principle

XACK

P15 Low Byte[7:0]

P15 Hign Byte[7:0] XACK

PEC data[7:0]

NACK

P

Relating Distance with FOV

The maximum distance to place the sensor from the object (or human) based on the object height is:

$$d_s = \frac{8 * h_0}{2 * \tan\left(\frac{\theta_y}{2}\right)}$$

where h_0 is the height of a single temperature pixel and θ_y is the FOV angle in the y direction.

Model Perspective: Example

Model Perspective: Example

- The motor rotates the sensor to increase the effective FOV
- We decided to use a 90° sweep, which provides 16 steps of ~5.6° each
- The maximum measured pixel value is utilized

Error Modeling

Error over Distance

Future Work

- More robust infrared sensor (our budget-friendly D6T was not precise enough for realistic applications)
- Artificial intelligence to discriminate between different children
- Proximity sensor so that temperature can be modeled according to distance
- Mobile app integration
- Other applications (i.e., smart security camera)

Demo

