
1

Programming for
Engineers
Multiple
Source Files
ICEN 200 – Spring 2018
Prof. Dola Saha

2

C Source Files

Ø A C program may be divided among any number of
source files.

Ø By convention, source files have the extension .c.
Ø Each source file contains part of the program, primarily

definitions of functions and variables.
Ø One source file must contain a function named main,

which serves as the starting point for the program.

3

Advantage of Splitting

Ø Splitting a program into multiple source files has
significant advantages:

§ Grouping related functions and variables into a single file helps clarify
the structure of the program.

§ Each source file can be compiled separately, which saves time.
§ Functions are more easily reused in other programs when grouped in

separate source files.

4

Header

Ø Problems that arise when a program is divided into
several source files:

§ How can a function in one file call a function that’s defined in another
file?

§ How can a function access an external variable in another file?
§ How can two files share the same macro definition or type definition?

Ø The answer lies with the #include directive, which
makes it possible to share information among any
number of source files.

5

Header
Ø The #include directive tells the preprocessor to

insert the contents of a specified file.
Ø Information to be shared among several source files can

be put into such a file.
Ø #include can then be used to bring the file’s

contents into each of the source files.
Ø Files that are included in this fashion are called header

files (or sometimes include files).
Ø By convention, header files have the extension .h.

6

MACRO

Ø Most large programs contain macro definitions and type
definitions that need to be shared by several source files.

Ø These definitions should go into header files.

7

Example MACRO
Ø Suppose that a program uses macros named BOOL,

TRUE, and FALSE.
Ø Their definitions can be put in a header file with a name

like boolean.h:
#define BOOL int
#define TRUE 1
#define FALSE 0

Ø Any source file that requires these macros will simply
contain the line
#include "boolean.h"

8

Example Sharing MACRO

Ø A program in which two files include boolean.h:

9

MACRO Sharing – Why?

Ø Advantages of putting definitions of macros and types in
header files:

§ Saves time. We don’t have to copy the definitions into the source files
where they’re needed.

§ Makes the program easier to modify. Changing the definition of a
macro or type requires editing a single header file.

§ Avoids inconsistencies caused by source files containing different
definitions of the same macro or type.

10

Sharing Function Prototype
Ø Suppose that a source file contains a call of a function f

that’s defined in another file, foo.c.
Ø Calling f without declaring it first is risky.
§ The compiler assumes that f’s return type is int.
§ It also assumes that the number of parameters matches the number of

arguments in the call of f.

Ø So, we put f’s prototype in a header file (foo.h), then
include the header file in all the places where f is called.

Ø We’ll also need to include foo.h in foo.c, enabling
the compiler to check that f’s prototype in foo.h
matches its definition in foo.c.

11

Sharing Variable

Ø To share a variable among files, we put its definition in
one source file, then keyword extern is used to
declare a variable without defining it.

Ø For example,
§ int i; // in file1.c
§ extern int i; // in file2.c

Ø extern informs the compiler that i is
defined elsewhere in the program, so there’s no
need to allocate space for it.

12

Compiling Multiple Source Files

$gcc helloExample.c helloFn.c -o hello
$./hello
Hello ICEN 200!
$

hello.h

helloFn.chelloExample.c

