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A Running Program’s Memory

Memory Allocation

Unused

User Stack

Shared Libraries

Heap

Read/Write Data

Read-only Code and Data

Unused

0x7FFFFFFFFFFF

0x000000000000

Loaded from the executable

Created at runtime

Created at runtime

Shared among processes

47 bits of address space
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Allocation

Ø For all data, memory must be allocated
§ Allocated = memory space reserved

Ø Two questions:
§ When do we know the size to allocate?
§ When do we allocate?

Ø Two possible answers for each:
§ Compile-time (static)
§ Run-time (dynamic)
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How much memory to allocate?
Ø Sometimes obvious:

Ø Sometimes not:

§ How will these be used???
o Will they point to already allocated memory (what we�ve seen so far)?
o Will new memory need to be allocated (we haven�t seen this yet)?

char  c;
int   array[10];

One byte

10 * sizeof(int) (= 40 on CLEAR)

char *c;
int  *array;

Is this going to point to one character or a 
string?

How big will this array be?
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Dynamic Memory Allocation
Ø Creating and maintaining dynamic data structures 

requires dynamic memory allocation—the ability for a 
program to obtain more memory space at execution 
time to hold new nodes, and to release space no 
longer needed.

Ø Functions malloc and free, and operator sizeof, are 
essential to dynamic memory allocation.
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Memory Use

Ø heap
§ region of memory in which function malloc dynamically allocates 

blocks of storage

Ø stack
§ region of memory in which function data areas are allocated and 

reclaimed
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malloc()

Ø void * malloc (size_t size)
Ø Input: number of bytes to be allocated 
Ø Output: a pointer of type void * (pointer to void) to the 

allocated memory.
Ø A void * pointer may be assigned to a variable of any

pointer type.
Ø Example:

newPtr = malloc(sizeof(int));

Ø The allocated memory is not initialized.
Ø If no memory is available, malloc returns NULL. 
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free()

Ø Function free deallocates memory—i.e., the memory is 
returned to the system so that it can be reallocated in the 
future.

Ø To free memory dynamically allocated by the preceding 
malloc call, use the statement
o free(newPtr);

Ø C also provides functions calloc and realloc for creating 
and modifying dynamic arrays.
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calloc() and realloc()

Ø calloc()
§ Allocates memory and cleares it to 0.
§ void * calloc (size_t count, size_t eltsize)

Ø realloc()
§ Make a block previously allocated by malloc larger or smaller, possibly 

by copying it to a new location.
§ void *realloc (void *addr, size_t size)
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Dynamic Memory Allocation
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Memory Allocation (1)
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Memory Allocation (2)
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Memory Allocation (3)
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Dynamic Memory Allocation with calloc()
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Dynamic Memory Allocation with calloc()
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Memory Functions
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memcpy()
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memmove()
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memcmp()
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memchr()
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memset()


