
1

Programming for
Engineers
Dynamic Memory
Allocation
ICEN 200 – Spring 2018
Prof. Dola Saha

2

A Running Program’s Memory

Memory Allocation

Unused

User Stack

Shared Libraries

Heap

Read/Write Data

Read-only Code and Data

Unused

0x7FFFFFFFFFFF

0x000000000000

Loaded from the executable

Created at runtime

Created at runtime

Shared among processes

47 bits of address space

3

Allocation

Ø For all data, memory must be allocated
§ Allocated = memory space reserved

Ø Two questions:
§ When do we know the size to allocate?
§ When do we allocate?

Ø Two possible answers for each:
§ Compile-time (static)
§ Run-time (dynamic)

4

How much memory to allocate?
Ø Sometimes obvious:

Ø Sometimes not:

§ How will these be used???
o Will they point to already allocated memory (what we�ve seen so far)?
o Will new memory need to be allocated (we haven�t seen this yet)?

char c;
int array[10];

One byte

10 * sizeof(int) (= 40 on CLEAR)

char *c;
int *array;

Is this going to point to one character or a
string?

How big will this array be?

5

Dynamic Memory Allocation
Ø Creating and maintaining dynamic data structures

requires dynamic memory allocation—the ability for a
program to obtain more memory space at execution
time to hold new nodes, and to release space no
longer needed.

Ø Functions malloc and free, and operator sizeof, are
essential to dynamic memory allocation.

6

Memory Use

Ø heap
§ region of memory in which function malloc dynamically allocates

blocks of storage

Ø stack
§ region of memory in which function data areas are allocated and

reclaimed

7

malloc()

Ø void * malloc (size_t size)
Ø Input: number of bytes to be allocated
Ø Output: a pointer of type void * (pointer to void) to the

allocated memory.
Ø A void * pointer may be assigned to a variable of any

pointer type.
Ø Example:

newPtr = malloc(sizeof(int));

Ø The allocated memory is not initialized.
Ø If no memory is available, malloc returns NULL.

8

free()

Ø Function free deallocates memory—i.e., the memory is
returned to the system so that it can be reallocated in the
future.

Ø To free memory dynamically allocated by the preceding
malloc call, use the statement
o free(newPtr);

Ø C also provides functions calloc and realloc for creating
and modifying dynamic arrays.

9

calloc() and realloc()

Ø calloc()
§ Allocates memory and cleares it to 0.
§ void * calloc (size_t count, size_t eltsize)

Ø realloc()
§ Make a block previously allocated by malloc larger or smaller, possibly

by copying it to a new location.
§ void *realloc (void *addr, size_t size)

10

Dynamic Memory Allocation

11

Memory Allocation (1)

12

Memory Allocation (2)

13

Memory Allocation (3)

14

Dynamic Memory Allocation with calloc()

15

Dynamic Memory Allocation with calloc()

16

Memory Functions

17

memcpy()

18

memmove()

19

memcmp()

20

memchr()

21

memset()

