
1

Programming for
Engineers

C Preprocessor
ICEN 200 – Spring 2018
Prof. Dola Saha

2

C Preprocessor

Ø The C preprocessor executes before a program is
compiled.

Ø Some actions it performs are the inclusion of other files
in the file being compiled, definition of symbolic
constants and macros, conditional compilation of
program code and conditional execution of preprocessor
directives.

Ø Preprocessor directives begin with # and only whitespace
characters and comments may appear before a
preprocessor directive on a line.

3

#include Preprocessor Directive

Ø A copy of a specified file will be included in place of the
directive

Ø Two forms:
§ #include <filename>
o Standard library headers
o Searches pre-designated compiler and system directories

§ #include “filename”
o Programmer defined headers
o Searches in the same directory as the file

4

Symbolic Constants
Ø The #define directive format is

o #define identifier replacement-text

Ø All occurrences of identifier will be replaced by replacement-
text automatically before the program is compiled.

Ø For example, #define PI 3.14159

replaces all subsequent occurrences of the symbolic constant
PI with the numeric constant 3.14159.	

Ø If the constant value needs to be modified throughout the
program, it can be modified once in the preprocessor
directive.

Ø BEST Practice: DO NOT use numbers inside the code, always
use preprocessor directive to create constants.

5

Example code
#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)
{
float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");
scanf("%f", &fahrenheit);

celsius = (fahrenheit - FREEZING_PT) *
SCALE_FACTOR;
printf("Celsius equivalent is: %.1f\n",
celsius);

return 0;
}

6

After Preprocessing
Blank line
Blank line
Lines brought in from stdio.h
Blank line
Blank line
Blank line
Blank line
int main(void)
{

float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");
scanf("%f", &fahrenheit);

celsius = (fahrenheit - 32.0f) * (5.0f / 9.0f);

printf("Celsius equivalent is: %.1f\n", celsius);

return 0;
}

7

Macro
Ø The macro-identifier is replaced in the program with

the replacement-text before the program is compiled.
Ø Macros may be defined
§ without arguments – processed like a symbolic constant
§ with arguments
o the arguments are substituted in the replacement text
o then the macro is expanded—i.e., the replacement-text

replaces the identifier and argument list in the program.
o #define CIRCLE_AREA(x) ((PI) * (x) * (x))

8

Example Macro
Ø #define CIRCLE_AREA(x) ((PI) * (x) * (x))
Ø Wherever CIRCLE_AREA(y) appears in the file, the value of y is

substituted for x in the replacement-text, the symbolic constant PI is
replaced by its value (defined previously) and the macro is expanded in
the program.

Ø Example Statement: area = CIRCLE_AREA(4);
Ø Expanded: area = ((3.14159) * (4) * (4));
Ø Example Statement: area = CIRCLE_AREA(c + 2);
Ø Expanded: area = ((3.14159) * (c + 2) * (c +

2));

9

Corresponding Function

Ø Function circleArea
o double circleArea(double x)

{
return 3.14159 * x * x;

}

performs the same calculation as macro
CIRCLE_AREA, but the function’s argument is
evaluated only once when the function is called.

10

Example MACRO with two arguments
Ø #define RECTANGLE_AREA(x, y) ((x) * (y))
Ø Statement

o rectArea = RECTANGLE_AREA(a + 4, b + 7);
Ø Expanded to

o rectArea = ((a + 4) * (b + 7));

11

Macro Error

Ø #define PRODUCT(x, y) (x * x)
Ø int result = PRODUCT(4,5)
Ø // returns 20
Ø int result = PRODUCT(2+2,3+2)
Ø // returns 10

12

MACRO Error

Ø For example, if we call CIRCLE_AREA as follows:
result = CIRCLE_AREA(++radius);

the call to the macro CIRCLE_AREA is expanded to:
result = ((3.14159) * (++radius) * (++radius));

which increments radius twice in the statement.

Ø In addition, the result of the preceding statement is
undefined because C allows a variable to be modified
only once in a statement.

13

MACRO Error

Ø An example that illustrates the need to put
parentheses around a macro’s replacement list:
#define TWO_PI 2*3.14159
/* needs parentheses around
replacement list */

Ø During preprocessing, the statement
conversion_factor = 360/TWO_PI;

becomes
conversion_factor = 360/2*3.14159;

The division will be performed before the
multiplication.

14

MACRO Error

Ø Each occurrence of a parameter in a macro’s
replacement list needs parentheses as well:
#define SCALE(x) (x*10)
/* needs parentheses around x */

Ø During preprocessing, the statement
j = SCALE(i+1);
becomes
j = (i+1*10);
This statement is equivalent to
j = i+10;

15

Multiline MACRO

Ø If the replacement text for a macro or symbolic constant
is longer than the remainder of the line, a backslash (\)
must be placed at the end of the line, indicating that the
replacement text continues on the next line.

#define NUMBERS 1, \
2, \
3

int x[] = { NUMBERS };
Expanded: int x[] = { 1, 2, 3 };

16

#undef

Ø If a macro ceases to be useful, it may be undefined with
the ‘#undef’ directive.

Ø ‘#undef’ takes a single argument, the name of the macro
to undefine.

Ø Once a macro has been undefined, that identifier may
be redefined as a macro by a subsequent ‘#define’
directive.

#define SIZE 10
#undef SIZE
int x = SUM; // Error
#define SIZE 100

17

Preprocessor

Ø Cast expressions, sizeof expressions and enumeration
constants cannot be evaluated in preprocessor directives.

Ø Whitespace may appear, following are same MACRO
§ #define FOUR (2 + 2)
§ #define FOUR (2 + 2)
§ #define FOUR (2 /* two */ + 2)

18

Conditional Compilation

Ø The conditional preprocessor construct is much like the if
selection statement.

Ø Consider the following preprocessor code:
o #if !defined(MY_CONSTANT)

#define MY_CONSTANT 0
#endif

determines whether MY_CONSTANT is defined—that is,
whether MY_CONSTANT has already appeared in an earlier
#define directive.	

19

Conditional Compilation

Ø Every #if construct ends with #endif.
Ø Directives #ifdef and #ifndef are shorthand for

#if defined(name) and #if
!defined(name).

Ø A multiple-part conditional preprocessor construct may
be tested by using the #elif (the equivalent of else if
in an if statement) and the #else (the equivalent of
else in an if statement) directives.

Ø These directives are frequently used to prevent header
files from being included multiple times in the same
source file.

20

Comment Code
Ø If the code contains multiline comments, /* and */ cannot

be used to accomplish this task, because such comments
cannot be nested.

Ø Instead, you can use the following preprocessor
construct:
o #if 0

code	prevented	from	compiling
#endif

Ø To enable the code to be compiled, replace the 0 in the
preceding construct with 1.

21

Debug
o #ifdef DEBUG

printf("Variable x = %d\n", x);
#endif

causes a printf statement to be compiled in the
program if the symbolic constant DEBUG has been
defined (#define DEBUG) before directive #ifdef
DEBUG.

22

Predefined Symbolic Constants

23

Assertions
Ø The assert macro—defined in the <assert.h>

header—tests the value of an expression at execution time.
Ø If the value of the expression is false (0),	assert prints an

error message and calls function abort (of the general
utilities library—<stdlib.h>)	to terminate program
execution.

Ø This is a useful debugging tool for testing whether a variable
has a correct value.

Ø For example, suppose variable x should never be larger than
10 in a program.

