
1

Programming for
Engineers

File Handling
ICEN 200 – Spring 2018
Prof. Dola Saha

2

Files in C

Ø Storage of data in variables and arrays is temporary—
such data is lost when a program terminates.

Ø Files are used for permanent retention of data.
Ø Computers store files on secondary storage devices, such

as hard drives, CDs, DVDs and flash drives.
Ø Objective: how data files are created, updated and

processed by C programs.
Ø We both consider sequential-access and random-access

file processing.

3

Files and Streams
Ø C views each file simply as a sequential stream of bytes.
Ø Each file ends either with an end-of-file marker or at a

specific byte number recorded in a system-maintained,
administrative data structure.

Ø When a file is opened, a stream is associated with it.
Ø Three files and their associated streams are automatically

opened when program execution begins—the standard input,
the standard output and the standard error.

Ø Streams provide communication channels between files and
programs.

4

Text file vs Binary files

Ø Text file is a term used for a file that is essentially a
sequence of character codes.

Ø Binary file is a term used for a file in which most bytes
are not intended to be interpreted as character codes.
Here are a few common binary file formats:

§ PDF, for documents
§ JPEG, GIF, and PNG, for images
§ MP3, for audio tracks

5

Steps in processing a file

Ø Create the stream via a pointer variable using the FILE
structure:
FILE *p;

Ø Open the file, associating the stream name with the file
name.

Ø Read or write the data.
Ø Close the file.

6

Open the file: fopen()

Mode Purpose Stream Position

r Read
File exists

Beginning of file

r+ Read and write
File exists

Beginning of file

w Write
If file exists, it is truncated to NULL, otherwise new created.

Beginning of file

w+ Write and read
If file exists, it is truncated to NULL, otherwise new created.

Beginning of file

a Append (write at end)
File exists

End of file

a+ Read and append
File exists

End of file

Ø FILE *fopen(const char *filename,
const char *mode);

7

Opening Binary Files

8

Functions to read and write data to file

Ø Function fgetc
§ like getchar, reads one character from a file.
§ receives as an argument a FILE pointer for the file from which a

character will be read.
§ The call fgetc(stdin) reads one character from stdin —the

standard input.

Ø Function fputc,
§ like putchar, writes one character to a file.
§ receives as arguments a character to be written and a pointer for

the file to which the character will be written.

9

Functions to read and write data to file

Ø Function fgets
§ Reads one line from a file.
§ char *fgets(char *str, int n, FILE
*stream)

Ø Function fputs
§ Writes one line to a file.
§ int fputs(const char *str, FILE
*stream)

10

Functions to read and write data to file

Ø Function fprintf
§ Like printf
§ Takes first argument as file pointer

Ø Function fscanf
§ Like scanf
§ Takes first argument as file pointer

11

Close the File: fclose()

Ø int fclose(FILE * stream)
Ø Returns 0 if successfully closed
Ø If function fclose is not called explicitly, the operating

system normally will close the file when program
execution terminates.

12

Create a sequential file … (1)

13

Create a sequential file … (2)

14

Read a record from File

15

16

FILE Pointer

Operating System’s
File Control Block

17

Binary Files

Ø A binary file is created by executing a program that
stores directly in the file the computer’s internal
representation of each file component.

634 Chapter 11 • Text and Binary File Processing

 else if (status != EOF)
 status = 0;

 return (status);
 }

 Programming

 1. Rewrite the file backup program in Fig. 11.1 so it uses a function with file
pointer parameters to do the actual file copy.

 11.2 Binary Files
 When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data. The program must again
expend time in converting the internal data format back into a stream of characters
for storage in an output file of text. In a C program, these conversions are carried
out by functions such as scanf and printf .

 Many programs produce output files that are used as input files for other pro-
grams. If there is no need for a human to read the file, it is a waste of computer time
for the first program to convert its internal data format to a stream of characters,
and then for the second program to have to apply an inverse conversion to extract
the intended data from the stream of characters. We can avoid this unnecessary
translation by using a binary file rather than a text file.

 A binary file is created by executing a program that stores directly in the file
the computer’s internal representation of each file component. For example, the
code fragment in Fig. 11.3 creates a binary file named "nums.bin" , which contains
the even integers from 2 to 500.

 You see in Fig. 11.3 that a binary file is declared in exactly the same way as a text
file. The fopen and fclose functions are used just as they are for text files, except

 binary file a file
containing binary
numbers that are the
computer’s internal
representation of each
file component

 FIGURE 11.3 Creating a Binary File of Integers

 1. FILE *binaryp;
 2. int i;
 3.
 4. binaryp = fopen("nums.bin", "wb");
 5.
 6. for (i = 2; i <= 500; i += 2)
 7. fwrite(&i, sizeof (int), 1, binaryp);
 8.
 9. fclose(binaryp);

18

Reset a file position pointer
Ø The statement

o rewind(cfPtr);

causes a program’s file position pointer—which indicates the number
of the next byte in the file to be read or written—to be repositioned
to the beginning of the file (i.e., byte 0) pointed to by cfPtr.

Ø The file position pointer is not really a pointer.
Ø Rather it’s an integer value that specifies the byte in the file at which

the next read or write is to occur.
Ø This is sometimes referred to as the file offset.
Ø The file position pointer is a member of the FILE structure associated

with each file.

19

Random Access File

Ø Individual records of a random-access file are normally
fixed in length and may be accessed directly (and thus
quickly) without searching through other records.

Ø Random-access files are appropriate for
§ airline reservation systems, banking systems, point-of-sale systems,

and other kinds of transaction-processing systems that require rapid
access to specific data.

20

Random Access File

Ø Fixed-length records enable data to be inserted in a
random-access file without destroying other data in the
file.

Ø Data stored previously can also be updated or deleted
without rewriting the entire file.

21

fwrite()

Ø Example use
o fprintf(fPtr, "%d", number);

could print a single digit or as many as 11 digits (10
digits plus a sign, each of which requires 1 byte of
storage)

Ø For a four-byte integer, we can use
o fwrite(&number, sizeof(int), 1, fPtr);

which always writes four bytes on a system with four-
byte integers from a variable number to the file
represented by fPtr. 1 denotes one integer will be
written.

22

fread()

Ø Function fread reads a specified number of bytes from
a file into memory.

Ø For example,
o fread(&client, sizeof(struct clientData),

1, cfPtr);

reads the number of bytes determined by
sizeof(struct clientData) from the file
referenced by cfPtr, stores the data in client and
returns the number of bytes read.

Ø The bytes are read from the location specified by the file
position pointer.

23

Random Access View

24

Moving to a location

Ø fseek
o int fseek(FILE *stream, long int offset,

int whence);
§ offset is the number of bytes to seek from
§ whence in the file pointed to by stream—a positive offset seeks

forward and a negative one seeks backward.

Ø Argument whence is one of the values
§ SEEK_SET: Value 0, beginning of file.
§ SEEK_CUR: Value 1, current position.
§ SEEK_END: Value 2, end of file.

25

Random Access File Code

26

Random Access File Code

27

Write randomly in a File (1)

28

Write randomly in a File (2)

29

Write randomly in a File (3)

30

Sample Execution

31

Reading Random Access File Sequentially (1)

32

Reading Random Access File Sequentially (2)

33

Reading Random Access File Sequentially Output

