
1

Programming for
Engineers

Structures, Unions
ICEN 200– Spring 2017
Prof. Dola Saha

2

Structure

Ø Collections of related variables under one name.
Ø Variables of may be of different data types.
Ø struct card {

char *face;
char *suit;

};

Ø Keyword struct introduces the structure definition.
Ø Members of the same structure type must have unique

names, but two different structure types may contain
members of the same name without conflict.

Tag

Members

3

Structure Declaration
Ø struct employee {

char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary;

};
Ø struct employee employee1, employee2;
Ø struct employee employees[100];
Ø struct employee {

char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary;

} employee1, employee2, *employeePtr;

4

Structure Tag

Ø The structure tag name is optional.
Ø If a structure definition does not contain a structure tag

name, variables of the structure type may be declared
only in the structure definition—not in a separate
declaration.

5

Self Reference
Ø A structure cannot contain an instance of itself.
Ø A variable of type struct employee cannot be declared in the

definition for struct employee.
Ø A pointer to struct employee, may be included.
Ø For example,

o struct employee2 {
char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary;
struct employee2 person; // ERROR
struct employee2 *ePtr; // pointer

};
Ø struct employee2 contains an instance of itself (person), which is an

error.

6

Storage in Memory

Ø Structures may not be compared using operators == and
!=, because

§ structure members are not necessarily stored in consecutive bytes of
memory.

Ø Computers may store specific data types only on certain
memory boundaries such as half-word, word or double-
word boundaries.

Ø A word is a standard memory unit used to store data in a
computer—usually 2 bytes or 4 bytes.

7

Storage in Memory
Ø struct example {

char c;
int i;

} sample1, sample2;

Possible storage, but machine dependant

8

Initialization
Ø struct card {

char *face;
char *suit;

};
Ø struct card aCard = {"Three", "Hearts"};

Ø If there are fewer initializers in the list than members in
the structure,

§ the remaining members are automatically initialized to 0
§ or NULL if the member is a pointer.

Ø Assignment Statement of same struct type
§ struct card aCard1 = aCard2;

9

Accessing Structure Members

Ø the structure member operator (.)—also called the dot
operator

§ printf("%s", aCard.suit); // displays
Hearts

Ø the structure pointer operator (->)—also called the arrow
operator.

§ cardPtr = &aCard;
§ printf("%s", cardPtr->suit); // displays

Hearts
§ Following are equivalent
o cardPtr->suit
o (*cardPtr).suit

10

Example

11

Structure with Function

Ø Structures may be passed to functions by
§ passing individual structure members
§ by passing an entire structure
§ by passing a pointer to a structure.

Ø Functions can return
§ individual structure members
§ an entire structure
§ a pointer to a structure

12

typedef
Ø The keyword typedef is a way to create synonyms (or

aliases) for previously defined data types.
Ø Names for structure types are often defined with typedef

to create shorter type names.
Ø Example:
§ typedef struct card Card;

Card is a synonym for type struct card.	
Ø Example:
§ typedef struct {

char *face;
char *suit;

} Card;
§ Card myCard, *myCardPtr, deck[52];

13

Card Shuffling Example (1)

14

Card Shuffling Example (2)

15

Card Shuffling Example (3)

16

Card Shuffling Example (4)

17

Card Shuffling Example (5)

18

Structure nested within another structure

 Exercises 437

b) The array subscript has been omitted. The expression should be
 hearts[10].face

c) A union can be initialized only with a value that has the same type as the union’s first
member.

d) A semicolon is required to end a structure definition.
e) Keyword struct was omitted from the variable declaration. The declaration should be

 struct person d;
f) Variables of different structure types cannot be assigned to one another.

Exercises
10.5 Provide the definition for each of the following structures and unions:

a) Structure inventory containing character array partName[30], integer partNumber,
floating-point price, integer stock and integer reorder.

b) Union data containing char c, short s, long b, float f and double d.
c) A structure called address that contains character arrays

streetAddress[25], city[20], state[3] and zipCode[6].
d) Structure student that contains arrays firstName[15] and

lastName[15] and variable homeAddress of type struct address from part (c).
e) Structure test containing 16 bit fields with widths of 1 bit. The names of the bit fields

are the letters a to p.

10.6 Given the following structure and variable definitions,

struct customer {
 char lastName[15];
 char firstName[15];
 unsigned int customerNumber;

 struct {
 char phoneNumber[11];
 char address[50];
 char city[15];
 char state[3];
 char zipCode[6];
 } personal;

} customerRecord, *customerPtr;

customerPtr = &customerRecord;

write an expression that can be used to access the structure members in each of the following parts:
a) Member lastName of structure customerRecord.
b) Member lastName of the structure pointed to by customerPtr.
c) Member firstName of structure customerRecord.
d) Member firstName of the structure pointed to by customerPtr.
e) Member customerNumber of structure customerRecord.
f) Member customerNumber of the structure pointed to by customerPtr.
g) Member phoneNumber of member personal of structure customerRecord.
h) Member phoneNumber of member personal of the structure pointed to by customerPtr.
i) Member address of member personal of structure customerRecord.
j) Member address of member personal of the structure pointed to by customerPtr.
k) Member city of member personal of structure customerRecord.
l) Member city of member personal of the structure pointed to by customerPtr.
m) Member state of member personal of structure customerRecord.
n) Member state of member personal of the structure pointed to by customerPtr.

19

Union

Ø A union is a derived data type—like a structure—with
members that share the same storage space.

Ø For different situations in a program, some variables may
not be relevant, but other variables are—so a union
shares the space instead of wasting storage on variables
that are not being used.

Ø The members of a union can be of any data type.
Ø The number of bytes used to store a union must be at

least enough to hold the largest member.

20

Definition
Ø union number {

int x;
double y;

};
Ø In a declaration, a union may be initialized with a value of the same

type as the first union member.
Ø union number value = {10};
Ø union number value = {1.43}; // ERROR

21

Permitted Operations

Ø The operations that can be performed on a union are:
§ assigning a union to another union of the same type,
§ taking the address (&) of a union variable,
§ and accessing union members using the structure member operator

and the structure pointer operator.

Ø Unions may not be compared using operators == and !=
for the same reasons that structures cannot be compared.

22

Union Example (1)

23

Union Example (2)

24

Union Use Case
typedef union		
{
int wears_wig;
char	color[20];

}		hair_t;

25

Structure & Union Example (1)

26

Structure & Union Example (2)

27

Structure & Union Example (3)

28

Structure & Union Example (4)

29

Structure & Union Example (5)

30

Structure & Union Example (6)

31

Structure & Union Example (7)

32

Enumeration
Ø Keyword enum, is a set of integer enumeration constants

represented by identifiers.
Ø Values in an enum start with 0, unless specified otherwise, and are

incremented by 1.
Ø For example, the enumeration

o enum months {
JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, DEC};

creates a new type, enum months, identifiers are set to the
integers 0 to 11, respectively.

Ø Example:
§ enum months {

JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};

identifiers are set to integers 1 to 12, respectively.

33

Enumeration Example

34

Enumeration Example Output

35

Enumerated Data Example

