Programming for

Engineers

Recursions ALBANY
ICEN 200- Spring 2018

Prof. Dola Saha

UNIVERSITYATALBANY
State University of New York

Function call stack and stack frames

> Stack is analogous to a pile of books
> Known as last-in, first-out (LIFO) data structures

Stack of books

UNIVERSITYATALBANY
State University of New York

Function call stack

> Supports function call & return

> Supports creation, maintenance & destruction of each
called function’s local variables

> Keeps track of return addresses that each function needs
to return control to the caller function

> Function call = an entry is pushed to stack
> Function return = an entry is popped from stack

UNIVERSITYATALBANY
State University of New York

Recursion

> A recursive function is a function that calls itself either
directly or indirectly through another function.

> Nature of recursion

= One or more simple cases of the problem have a straightforward,
nonrecursive solution.

= The other cases can be redefined in terms of problems that are closer
to the simple cases.

size n —>\ sizen-1 —>\ sizen-2 —> size 2 —— size 1
problem problem problem problem problem
size 1 size 1 size 1 size 1
problem problem problem problem
4

UNIVERSITYATALBANY

State University of New York

Recursively calculating Factorial

> The factorial of a nonnegative integer n, written n/

(pronounced “n factorial®), is the product
on-+(n-=-1) - (n-2) - . -1

with 1! equal to 1, and 0! defined to be 1.

> A recursive definition of the factorial function is arrived

at by observing the following relationship:
nl =n . (n-1)!

> Proof:
nl =n-. (n-1) - (n-2) -... -2 -1
nl =n-. ((n-1) - (n-2) -... -2 1)
nl =n - ((n-1)!)

UNIVERSITYATALBANY
State University of New York

a) Sequence of recursive calls b) Values returned from each recursive call

Final value = 120

5! 5!
5/ =5*24 =120 is returned
5 * 4| 5 * 4
41 =4 * 6 =24 s returned
4 * 31 4 * 3|
31 =3 *2=6Is returned
3 * 21 3 * 21
2! =2* | =2is returned
2 * 1! 2 * 1!
| is returned
_1| _1|

UNIVERSITYATALBANY 6

State University of New York

Recursive Factorial C Code (1)

1 // Fig. 5.18: fig05_18.c

2 // Recursive factorial function.

3 #include <stdio.h>

4

5 unsigned long long int factorial(unsigned int number);
6

7 1int main(void)

8 {

9 // during each iteration, calculate

10 // factorial(i) and display result

11 for (unsigned int 1 = 0; 1 <= 21; ++1) {

12 printf("%u! = %1Tu\n", i, factorial(i));
13 }

14 }

15

UNIVERSITYATALBANY

State University of New York

Recursive Factorial C Code (2)

16
17
18
19
20
21
22
23
24
25
26

// recursive definition of function factorial
unsigned long long int factorial(unsigned int number)
{
// base case
if (number <= 1) {
return 1;
}
else { // recursive step
return (number * factorial(number - 1));

}

UNIVERSITYATALBANY

State University of New York

Recursive Factorial C Code (5) - Output

ol =1

1! =1

21 =2

3! =6

41 = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

91 = 362880

10! = 3628800

11! = 39916800

12! = 479001600

13! = 6227020800

14! = 87178291200

15! = 1307674368000

16! = 20922789888000

17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 14197454024290336768

UNIVERSITYATALBANY

State University of New York

Example Fibonacci Series by Recursion

> The Fibonacci series
-9, 1, 1, 2, 3, 5, 8, 13, 21, ..

> The Fibonacci series may be defined recursively as follows:
fibonacci(@) = ©
fibonacci(1) 1
fibonacci(n) = fibonacci(n - 1) + fibonacci(n - 2)

UNIVERSITYATALBANY

State University of New York

10

Recursive Fibonacci Series C Code (1)

I // Fig. 5.19: fig05_19.c
2 // Recursive fibonacci function
3 #include <stdio.h>
4
5 unsigned long long int fibonacci(unsigned int n); // function prototype
6
7 1int main(void)
8 {
9 unsigned int number; // number input by user
10
11 // obtain integer from user
12 printf("%s", "Enter an integer: ");
13 scanf("%u", &number);
14
15 // calculate fibonacci value for number input by user
16 unsigned long long 1int result = fibonacci(number);
17
I8 // display result
19 printf("Fibonacci(%u) = %1Tu\n", number, result);
20 }
21

UNIVERSITYATALBANY

State University of New York

11

Recursive Fibonacci Series C Code (2)

22 // Recursive definition of function fibonacci
23 unsigned long long int fibonacci(unsigned int n)
24 {

25 // base case

26 if (0O = n || 1 = n) {

27 return n;

28 }

29 else { // recursive step

30 return fibonacci(n - 1) + fibonacci(n - 2);
31 }

32 }

Enter an integer: O
Fibonacci(0) = 0

Enter an integer: 1
Fibonacci(l) =1

Enter an integer: 2
Fibonacci(2) =1

return

|
return

'C3 UNIVERSITYATALBANY 13

W1 State University of New York

Recursion vs lteration

> Both iteration and recursion are based on a control
statement: |teration uses a repetition statement; recursion
uses a selection statement.

> Both iteration and recursion involve repetition: lteration
explicitly uses a repetition statement; recursion achieves
repetition through repeated function calls.

> Iteration and recursion each involve a termination test.
lteration terminates when the loop-continuation condition
fails; recursion when a base case is recognized.

UNIVERSITYATALBANY 14

State University of New York

Recursion is expensive

>

>

It repeatedly invokes the mechanism, and consequently the
overhead, of function calls.

This can be expensive in both processor time and memory
space.

Each recursive call causes another copy of the function to be
created; this can consume considerable memory.

The amount of memory in a computer is finite, so only a
certain amount of memory can be used to store stack frames
on the function call stack.

If more function calls occur than can have their stack frames
stored on the function call stack, a fatal error known as a
stack overflow occurs.

UNIVERSITYATALBANY

ate University of New York

15

Class Discussion

> Write a C Program to find product of 2 Numbers using
Recursion

> Example:
= Multiply 6 by 3
= Divide it into two problems:
1. Multiply 6 by 2
2. Add 6 to the result of problem 1

= Split problem 1 into 2 smaller problems:

1. Multiply 6 by 2
a) Multiply6 by 1
b) Add 6 to the result of problem 1a)

2. Add 6 to the result of problem 1

UNIVERSITYATALBANY

State University of New York

16

Class Discussion

> Write a C Program to find product of 2 Numbers using
Recursion

> Example:
= Multiply 6 by 3
= Divide it into two problems: > Generalization:
1. Multiply 6 by 2 = |fnisl,
2. Add 6 to the result of problem 1 o ansism.
= Split problem 1 into 2 smaller problems: = F|se
1. Multiply 6 by 2 o ansis m+ multiply(m-1)

a) Multiply6 by 1
b) Add 6 to the result of problem 1a)

2. Add 6 to the result of problem 1

UNIVERSITYATALBANY 17

State University of New York

FIGURE 9.5 multiply (6, 3)=

Trace of Function

Multiply
18

'C3 UNIVERSITYATALBANY 18

W1 State University of New York

L__|
FIGURE 9.9 Recursive Function multiply with Print Statements to Create Trace and Output

from multiply(8, 3)

* Post: returns m * n
*/
int
multiply(int m, int n)
{

int ans;

if (n == 1)

else

return (ans);

Entering multiply with m = 8,
Entering multiply with m = 8,
Entering multiply with m = 8,
multiply(8, 1) returning 8
multiply(8, 2) returning 16
multiply(8, 3) returning 24

#%#% Includes calls to printf to trace execution #***
* Performs integer multiplication using + operator.
* Pre: m and n are defined and n > 0

printf(“Entering multiply with m

m; /* simple case */

ans = m + multiply(m, n - 1); /* recursive step */
printf(“multiply(%d, %d) returning %d\n", m, n, ans);

o

%d\n", m,

A6 UNIVERIIL XY M ALDAINX
W1 State University of New York

19

Class Discussion

> Raising an integer to an integer power

> Example:
n 33
= Divide it into two problems:
1. 3
2. Multiply 3 to the result of problem 1

= Split problem 1 into 2 smaller problems:

1. 3
a) 3!
b) Multiply 3 to the result of problem 1a)

2. Multiply 3 to the result of problem 1

UNIVERSITYATALBANY

State University of New York

20

Class Discussion

> Raising an integer to an integer power

> Example:
m 33
= Divide it into two problems:
1. 32 > Generalization:
2. Multiply 3 to the result of problem1 Ifnis 1,
= Split problem 1 into 2 smaller problems: 5 ansism.

L3 = Else
a) 3!

b) Multiply 3 to the result of problem 1a)
2. Multiply 3 to the result of problem 1

o ansism ™ power(m,n)

UNIVERSITYATALBANY

State University of New York

21

Count by Recursion

> Develop a function to count the number of times a
particular character appears in a string.

count('s’, “Mississippi sassafrs”);

FIGURE 9.3 Counting occurrences of 's' in

. Mississippl sassafras
Thougnht Process '
of Recursive T

b s 11~ g ~t AT ~ ~
If | could just get someone to

4+ Ja g thhiee i
countthe s's in this list

Algorithm
Developer o

.. .then the number of s's is either that number
or 1 more, depending on whether the first
letter is an s.

UNIVERSITYATALBANY 22

State University of New York

—

S oCLVWENOUVAWN =

e T T T T N
B

-
e

20.

FIGURE 9.4 Counting Occurrences of a Character in a String

[*
* Counting occurrences of a letter in a string.
*/

#include <stdio.h>

int count(char ch, const char #*str);

int

main(void)

{
char str[80]; /* string to be processed */
char target; /* character counted */

int my_count;

printf("Enter up to 79 characters.\n");
gets(str); /* read in the string */

printf("Enter the character you want to count: ");
scanf("%c", &target);

my count = count(target, str);
printf("The number of occurrences of %c in\n\"%s\"\nis %d\n",
target, str, my_count);

{continued)

23

' FIGURE 9.4 (continued)

return (0);
}
/>
* Counts the number of times ch occurs in string str.
* Pre: Letter ch and string str are defined.
*/
int
count(char ch, const char *str)
{
int ans;
if (str(0] == '\0') /* simple case */
ans = 0;
else /* redefine problem using recursion */
if (ch == str(0)) /* first character must be counted */
ans = 1 + count(ch, &str(l]);
else /* first character is not counted */
ans = count(ch, &str[l]);
return (ans);
}

Enter up to 79 characters.

this is the string I am testing

Enter the character you want to count: t

The number of occurrences of t in

"this is the string I am testing" is 5 24

Iteration vs Recursion

> lteration

= When the problem is simple

= When solution is not inherently
recursive

= The stack space available to a
thread is often much less than
the space available in the heap,
Recursive algorithms require
more stack space than iterative
algorithms.

UNIVERSITYATALBANY

State University of New York

> Recursion
= When the problem is complex

= When the solution is inherently
recursive

25

Iteration vs Recursion

N

More difficult,
more CPU usage

Solution Factonal Problem
Difficulty &
CPU usage

- Non-recursive solution
— Recursive solution

- Simulated-recursive solution

Problem Difficulty

UNIVERSITYATALBANY

State University of New York

—

