
1

Programming for
Engineers

Recursions
ICEN 200– Spring 2018
Prof. Dola Saha

2

Function call stack and stack frames
Ø Stack is analogous to a pile of books
Ø Known as last-in, first-out (LIFO) data structures

Push Pop

Stack of books

3

Function call stack

Ø Supports function call & return
Ø Supports creation, maintenance & destruction of each

called function’s local variables
Ø Keeps track of return addresses that each function needs

to return control to the caller function
Ø Function call à an entry is pushed to stack
Ø Function return à an entry is popped from stack

4

Recursion

Ø A recursive function is a function that calls itself either
directly or indirectly through another function.

Ø Nature of recursion
§ One or more simple cases of the problem have a straightforward,

nonrecursive solution.
§ The other cases can be redefined in terms of problems that are closer

to the simple cases.

5

Recursively calculating Factorial
Ø The factorial of a nonnegative integer n, written n!

(pronounced “n factorial”), is the product
o n · (n –1) · (n – 2) · … · 1

with 1! equal to 1, and 0! defined to be 1.
Ø A recursive definition of the factorial function is arrived

at by observing the following relationship:
n! = n · (n – 1)!

Ø Proof:
n! = n · (n-1) · (n-2) ·…… · 2 · 1
n! = n · ((n-1) · (n-2) ·…… · 2 · 1)
n! = n · ((n-1)!)

6

Recursive evaluation of 5!

7

Recursive Factorial C Code (1)

8

Recursive Factorial C Code (2)

9

Recursive Factorial C Code (3) – Output

10

Example Fibonacci Series by Recursion

Ø The Fibonacci series
o 0, 1, 1, 2, 3, 5, 8, 13, 21, …

Ø The Fibonacci series may be defined recursively as follows:
fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

11

Recursive Fibonacci Series C Code (1)

12

Recursive Fibonacci Series C Code (2)

13

Recursive calls

14

Recursion vs Iteration
Ø Both iteration and recursion are based on a control

statement: Iteration uses a repetition statement; recursion
uses a selection statement.

Ø Both iteration and recursion involve repetition: Iteration
explicitly uses a repetition statement; recursion achieves
repetition through repeated function calls.

Ø Iteration and recursion each involve a termination test:
Iteration terminates when the loop-continuation condition
fails; recursion when a base case is recognized.

15

Recursion is expensive
Ø It repeatedly invokes the mechanism, and consequently the

overhead, of function calls.
Ø This can be expensive in both processor time and memory

space.
Ø Each recursive call causes another copy of the function to be

created; this can consume considerable memory.
Ø The amount of memory in a computer is finite, so only a

certain amount of memory can be used to store stack frames
on the function call stack.

Ø If more function calls occur than can have their stack frames
stored on the function call stack, a fatal error known as a
stack overflow occurs.

16

Class Discussion

Ø Write a C Program to find product of 2 Numbers using
Recursion

Ø Example:
§ Multiply 6 by 3
§ Divide it into two problems:

1. Multiply 6 by 2
2. Add 6 to the result of problem 1

§ Split problem 1 into 2 smaller problems:
1. Multiply 6 by 2

a) Multiply 6 by 1
b) Add 6 to the result of problem 1a)

2. Add 6 to the result of problem 1

17

Class Discussion

Ø Write a C Program to find product of 2 Numbers using
Recursion

Ø Example:
§ Multiply 6 by 3
§ Divide it into two problems:

1. Multiply 6 by 2
2. Add 6 to the result of problem 1

§ Split problem 1 into 2 smaller problems:
1. Multiply 6 by 2

a) Multiply 6 by 1
b) Add 6 to the result of problem 1a)

2. Add 6 to the result of problem 1

Ø Generalization:
§ If n is 1,
o ans is m.

§ Else
o ans is m + multiply(m-1)

18

Trace Multiply

19

Recursive Multiply

20

Class Discussion

Ø Raising an integer to an integer power
Ø Example:
§ 33

§ Divide it into two problems:
1. 32

2. Multiply 3 to the result of problem 1
§ Split problem 1 into 2 smaller problems:

1. 32

a) 31

b) Multiply 3 to the result of problem 1a)

2. Multiply 3 to the result of problem 1

21

Class Discussion

Ø Raising an integer to an integer power
Ø Example:
§ 33

§ Divide it into two problems:
1. 32

2. Multiply 3 to the result of problem 1
§ Split problem 1 into 2 smaller problems:

1. 32

a) 31

b) Multiply 3 to the result of problem 1a)

2. Multiply 3 to the result of problem 1

Ø Generalization:
§ If n is 1,
o ans is m.

§ Else
o ans is m * power(m,n)

22

Count by Recursion

Ø Develop a function to count the number of times a
particular character appears in a string.

count(‘s’, “Mississippi sassafrs”);

23

Counting Occurences Code (1)

24

Counting Occurences Code (2)

25

Iteration vs Recursion

Ø Iteration
§ When the problem is simple
§ When solution is not inherently

recursive
§ The stack space available to a

thread is often much less than
the space available in the heap,
Recursive algorithms require
more stack space than iterative
algorithms.

Ø Recursion
§ When the problem is complex
§ When the solution is inherently

recursive

26

Iteration vs Recursion

