Programming for Engineers

Recursions

ICEN 200-Spring 2018 Prof. Dola Saha

Function call stack and stack frames

> Stack is analogous to a pile of books
> Known as last-in, first-out (LIFO) data structures

Stack of books

Function call stack

> Supports function call \& return
> Supports creation, maintenance \& destruction of each called function's local variables
> Keeps track of return addresses that each function needs to return control to the caller function
$>$ Function call \rightarrow an entry is pushed to stack
> Function return \rightarrow an entry is popped from stack

Recursion

$>$ A recursive function is a function that calls itself either directly or indirectly through another function.

> Nature of recursion

- One or more simple cases of the problem have a straightforward, nonrecursive solution.
- The other cases can be redefined in terms of problems that are closer to the simple cases.

Recursively calculating Factorial

> The factorial of a nonnegative integer n, written n ! (pronounced " n factorial"), is the product

- $n \cdot(n-1) \cdot(n-2) \cdot . . . ~ \cdot 1$ with 1 ! equal to 1 , and 0 ! defined to be 1.
> A recursive definition of the factorial function is arrived at by observing the following relationship:

$$
n!=n \cdot(n-1)!
$$

> Proof:

$$
\begin{aligned}
& n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \ldots \cdot 2 \cdot 1 \\
& n!=n \cdot((n-1) \cdot(n-2) \cdot \ldots \ldots \cdot 2 \cdot 1) \\
& n!=n \cdot((n-1)!)
\end{aligned}
$$

Recursive evaluation of 5 !

a) Sequence of recursive calls

b) Values returned from each recursive call

Recursive Factorial C Code (1)

```
// Fig. 5.18: fig05_18.c
// Recursive factorial function.
#include <stdio.h>
unsigned long long int factorial(unsigned int number);
    int main(void)
    {
            // during each iteration, calculate
            // factorial(i) and display result
            for (unsigned int i = 0; i <= 21; ++i) {
                printf("%u! = %11u\n", i, factorial(i));
            }
}
```


Recursive Factorial C Code (2)

```
16 // recursive definition of function factorial
18 {
19 // base case
2I return 1;
22
23
24
25
26
```

```
17 unsigned long long int factorial(unsigned int number)
```

17 unsigned long long int factorial(unsigned int number)
20 if (number <= 1) {
20 if (number <= 1) {

```
    }
```

 }
 else { // recursive step
 else { // recursive step
 return (number * factorial(number - 1));
 return (number * factorial(number - 1));
 }
 }
 }

```
}
```


Recursive Factorial C Code (3) - Output

```
\(0!=1\)
\(1!=1\)
\(2!=2\)
\(3!=6\)
\(4!=24\)
\(5!=120\)
\(6!=720\)
\(7!=5040\)
\(8!=40320\)
\(9!=362880\)
\(10!=3628800\)
\(11!=39916800\)
\(12!=479001600\)
\(13!=6227020800\)
\(14!=87178291200\)
\(15!=1307674368000\)
\(16!=20922789888000\)
\(17!=355687428096000\)
\(18!=6402373705728000\)
\(19!=121645100408832000\)
\(20!=2432902008176640000\)
\(21!=14197454024290336768\)
```


Example Fibonacci Series by Recursion

> The Fibonacci series

$$
\text { - } 0,1,1,2,3,5,8,13,21, . . .
$$

> The Fibonacci series may be defined recursively as follows:

```
fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n - 1) + fibonacci(n - 2)
```


Recursive Fibonacci Series C Code (1)

```
// Fig. 5.19: fig05_19.c
// Recursive fibonacci function
#include <stdio.h>
unsigned long long int fibonacci(unsigned int n); // function prototype
int main(void)
{
        unsigned int number; // number input by user
        // obtain integer from user
        printf("%s", "Enter an integer: ");
        scanf("%u", &number);
        // calculate fibonacci value for number input by user
        unsigned long long int result = fibonacci(number);
        // display result
        printf("Fibonacci(%u) = %1lu\n", number, result);
}
```


Recursive Fibonacci Series C Code (2)

```
22 // Recursive definition of function fibonacci
2 3 \text { unsigned long long int fibonacci(unsigned int n)}
2 4
25
26
27
28
2 9
30
31
32
{
    // base case
    if (0 == n || 1 == n) {
        return n;
    }
    else { // recursive step
        return fibonacci(n - 1) + fibonacci(n - 2);
    }
}
```

Enter an integer: 0
Fibonacci(0) $=0$

Enter an integer: 1
Fibonacci(1) = 1

Enter an integer: 2
Fibonacci(2) = 1

Recursive calls

Recursion vs Iteration

> Both iteration and recursion are based on a control statement: Iteration uses a repetition statement; recursion uses a selection statement.
> Both iteration and recursion involve repetition: Iteration explicitly uses a repetition statement; recursion achieves repetition through repeated function calls.
> Iteration and recursion each involve a termination test. Iteration terminates when the loop-continuation condition fails, recursion when a base case is recognized.

Recursion is expensive

> It repeatedly invokes the mechanism, and consequently the overhead, of function calls.
> This can be expensive in both processor time and memory space.

- Each recursive call causes another copy of the function to be created; this can consume considerable memory.
> The amount of memory in a computer is finite, so only a certain amount of memory can be used to store stack frames on the function call stack.
> If more function calls occur than can have their stack frames stored on the function call stack, a fatal error known as a stack overflow occurs.

Class Discussion

> Write a C Program to find product of 2 Numbers using Recursion

> Example:

- Multiply 6 by 3
- Divide it into two problems:

1. Multiply 6 by 2
2. Add 6 to the result of problem 1

- Split problem 1 into 2 smaller problems:

1. Multiply 6 by 2
a) Multiply 6 by 1
b) Add 6 to the result of problem 1a)
2. Add 6 to the result of problem 1

Class Discussion

> Write a C Program to find product of 2 Numbers using Recursion

> Example:

- Multiply 6 by 3
- Divide it into two problems:

1. Multiply 6 by 2

- If n is 1 ,

2. Add 6 to the result of problem 1

- Split problem 1 into 2 smaller problems:

1. Multiply 6 by 2

- ans is $m+$ multiply($m-1$)
a) Multiply 6 by 1
b) Add 6 to the result of problem 1a)

2. Add 6 to the result of problem 1

Trace Multiply

FIGURE 9.5
Trace of Function Multiply

Recursive Multiply

FIGURE 9.9 Recursive Function multiply with Print Statements to Create Trace and Output
from multiply $(8,3)$

```
/*
    * *** Includes calls to printf to trace execution ***
    * Performs integer multiplication using + operator.
    * Pre: m and n are defined and n > 0
    * Post: returns m * n
    */
int
multiply(int m, int n)
{
            int ans;
    printf("Entering multiply with m = %d, n = %d\n", m, n);
            if (n == 1)
                    ans = m; /* simple case */
            else
                    ans = m + multiply(m, n - 1); /* recursive step */
    printf("multiply(%d, %d) returning %d\n", m, n, ans);
            return (ans);
}
Entering multiply with m = 8, n = 3
Entering multiply with m = 8, n = 2
Entering multiply with m = 8, n = 1
multiply(8, 1) returning 8
multiply(8, 2) returning 16
multiply(8, 3) returning 24
```


Class Discussion

> Raising an integer to an integer power
> Example:

- 3^{3}
- Divide it into two problems:

1. 3^{2}
2. Multiply 3 to the result of problem 1

- Split problem 1 into 2 smaller problems:

1. 32
a) 3^{1}
b) Multiply 3 to the result of problem 1a)
2. Multiply 3 to the result of problem 1

Class Discussion

$>$ Raising an integer to an integer power
> Example:

- 3^{3}
- Divide it into two problems:

1. 3^{2}
2. Multiply 3 to the result of problem 1

- Split problem 1 into 2 smaller problems:

1. 3^{2}
a) 3^{1}
b) Multiply 3 to the result of problem 1a)
2. Multiply 3 to the result of problem 1
> Generalization:

- If n is 1 ,
- ans is m .
- Else
- ans is m * power(m,n)

Count by Recursion

> Develop a function to count the number of times a particular character appears in a string.
count('s', "Mississippi sassafrs");

FIGURE 9.3

Counting occurrences of ' s ' in
Thought Process
of Recursive
Algorithm
Developer

Counting Occurences Code (1)

FIGURE 9.4 Counting Occurrences of a Character in a String

/*

* Counting occurrences of a letter in a string.
*/
\#include <stdio.h>
int count(char ch, const char *str);
int
main(void)
\{

```
char str[80]; /* string to be processed */
char target; /* character counted */
int my_count;
printf("Enter up to 79 characters.\n");
gets(str); /* read in the string */
printf("Enter the character you want to count: ");
scanf("%c", &target);
my_count = count(target, str);
printf("The number of occurrences of %c in\n\"%s\"\nis %d\n",
target, str, my_count);
```


Counting Occurences Code (2)

```
FIGURE 9.4 (continued)
    return (0);
}
/*
    * Counts the number of times ch occurs in string str.
* Pre: Letter ch and string str are defined.
*/
int
count(char ch, const char *str)
{
    int ans;
    if (str[0] == '\0') /* simple case */
        ans = 0;
    else /* redefine problem using recursion */
        if (ch == str[0]) /* first character must be counted */
            ans = 1 + count(ch, &str[1]);
        else /* first character is not counted */
            ans = count(ch, &str[1]);
    return (ans);
}
Enter up to }79\mathrm{ characters.
this is the string I am testing
Enter the character you want to count: t
The number of occurrences of }t\mathrm{ in
"this is the string I am testing" is 5
```


Iteration vs Recursion

> Iteration

- When the problem is simple
- When solution is not inherently recursive
- The stack space available to a thread is often much less than the space available in the heap, Recursive algorithms require more stack space than iterative algorithms.
> Recursion
- When the problem is complex
- When the solution is inherently recursive

Iteration vs Recursion

