
1

Programming for
Engineers

Pointers
ICEN 200 – Spring 2018
Prof. Dola Saha

2

Pointers

Ø Pointers are variables whose values are memory
addresses.

Ø A variable name directly references a value, and a pointer
indirectly references a value.

Ø Referencing a value through a pointer is called
indirection.

3

Declaring Pointers
Ø Pointers must be defined before they can be used.
Ø The definition

o int *countPtr, count;
specifies that variable countPtr is of type int * (i.e., a pointer
to an integer).

Ø The variable count is defined to be an int, not a pointer to an
int.

4

Initializing Pointers
Ø Pointers should be initialized when they’re defined or they

can be assigned a value.
Ø A pointer may be initialized to NULL, 0 or an address.
Ø A pointer with the value NULL points to nothing.
Ø NULL is a symbolic constant defined in the <stddef.h>

header (and several other headers, such as <stdio.h>).
Ø Initializing a pointer to 0 is equivalent to initializing a

pointer to NULL, but NULL is preferred.
Ø When 0 is assigned, it’s first converted to a pointer of the

appropriate type.
Ø The value 0 is the only integer value that can be assigned

directly to a pointer variable.

5

Pointer Operator
Ø The &, or address operator, is a unary operator that returns the

address of its operand.
Ø Example definition

o int y = 5;
int *yPtr;

the statement
o yPtr = &y;

assigns the address of the variable y to pointer variable yPtr.
Ø Variable yPtr is then said to “point to” y.

Graphical Representation

Memory Representation

6

Indirection (*) Operator

Ø The unary * operator, commonly referred to as the
indirection operator or dereferencing operator, returns
the value of the object to which its operand (i.e., a
pointer) points.

Ø Example:
o printf("%d", *yPtr);

prints the value of variable that yPtr is pointing to
In this case it is y, whose value is 5.

Ø Using * in this manner is called dereferencing a pointer.

7

Using & and *

8

Pass by value

9

Pass by reference – simulating with Pointer

10

Pass by value (1)

11

Pass by value (2)

12

Pass by value (3)

13

Pass by reference (1)

14

Pass by reference (2)

15

Determine Size of Data Types (1)

16

Determine Size of Data Types (2)

17

Pointer Arithmetic
Ø A pointer may be
§ incremented (++) or decremented (--),
§ an integer may be added to a pointer (+ or +=),
§ an integer may be subtracted from a pointer (- or -=)
§ one pointer may be subtracted from another—this last operation is

meaningful only when both pointers point to elements of the same array.

Ø When an integer n is added to or subtracted from a pointer
§ Pointer is incremented or decremented by that integer times the size of the

object to which the pointer refers.

vPtr+=2;

18

Pointer and Array
Ø Arrays and pointers are intimately related in C and often may be used

interchangeably.
Ø An array name can be thought of as a constant pointer.
Ø Pointers can be used to do any operation involving array indexing.
Ø Set bPtr equal to the address of the first element in array b with

the statement
§ bPtr = b;

Ø Address of the array’s first element:
§ bPtr = &b[0];

19

Pointer and Array
Ø Array element b[3] with pointer expression
§ *(bPtr + 3)
§ The 3 in the expression is the offset to the pointer.

Ø This notation is referred to as pointer/offset notation.
Ø Address of b[3] can be referenced as
§ &b[3]
§ (bPtr+3)

20

Access array elements by pointer (1)

21

Access array elements by pointer (2)

22

Pointer Notation with Arrays (1)

23

Pointer Notation with Arrays (2)

24

Pointer Notation with Arrays (3)

25

Array of Pointers

Ø Arrays may contain pointers

304 Chapter 7 C Pointers

string is essentially a pointer to its first character. So each entry in an array of strings is ac-
tually a pointer to the first character of a string. Consider the definition of string array
suit, which might be useful in representing a deck of cards.

The suit[4] portion of the definition indicates an array of 4 elements. The char * por-
tion of the declaration indicates that each element of array suit is of type “pointer to
char.” Qualifier const indicates that the strings pointed to by each element pointer will
not be modified. The four values to be placed in the array are "Hearts", "Diamonds",
"Clubs" and "Spades". Each is stored in memory as a null-terminated character string
that’s one character longer than the number of characters between quotes. The four strings
are 7, 9, 6 and 7 characters long, respectively. Although it appears as though these strings
are being placed in the suit array, only pointers are actually stored in the array
(Fig. 7.22). Each pointer points to the first character of its corresponding string. Thus,
even though the suit array is fixed in size, it provides access to character strings of any
length. This flexibility is one example of C’s powerful data-structuring capabilities.

The suits could have been placed in a two-dimensional array, in which each row
would represent a suit and each column would represent a letter from a suit name. Such a
data structure would have to have a fixed number of columns per row, and that number
would have to be as large as the largest string. Therefore, considerable memory could be
wasted when storing a large number of strings of which most were shorter than the longest
string. We use string arrays to represent a deck of cards in the next section.

7.11 Case Study: Card Shuffling and Dealing Simulation
In this section, we use random number generation to develop a card shuffling and dealing
simulation program. This program can then be used to implement programs that play
specific card games. To reveal some subtle performance problems, we’ve intentionally used
suboptimal shuffling and dealing algorithms. In this chapter’s exercises and in Chapter 10,
we develop more efficient algorithms.

Using the top-down, stepwise refinement approach, we develop a program that will
shuffle a deck of 52 playing cards and then deal each of the 52 cards. The top-down
approach is particularly useful in attacking larger, more complex problems than you’ve
seen in earlier chapters.

const char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades"
};

Fig. 7.22 | Graphical representation of the suit array.

'S'suit[3]

suit[2]

suit[1]

suit[0]

'p' 'a' 'd' 'e' 's' '\0'

'C' 'l' 'u' 'b' 's' '\0'

'D' 'i' 'a' 'm' 'o' 'n' 'd' 's' '\0'

'H' 'e' 'a' 'r' 't' 's' '\0'

7.11 Case Study: Card Shuffling and Dealing Simulation 305

We use 4-by-13 double-subscripted array deck to represent the deck of playing cards
(Fig. 7.23). The rows correspond to the suits—row 0 corresponds to hearts, row 1 to dia-
monds, row 2 to clubs and row 3 to spades. The columns correspond to the face values of
the cards—columns 0 through 9 correspond to ace through ten respectively, and columns
10 through 12 correspond to jack, queen and king. We shall load string array suit with
character strings representing the four suits, and string array face with character strings
representing the thirteen face values.

This simulated deck of cards may be shuffled as follows. First the array deck is cleared
to zeros. Then, a row (0–3) and a column (0–12) are each chosen at random. The number
1 is inserted in array element deck[row][column] to indicate that this card will be the first
one dealt from the shuffled deck. This process continues with the numbers 2, 3, …, 52
being randomly inserted in the deck array to indicate which cards are to be placed second,
third, …, and fifty-second in the shuffled deck. As the deck array begins to fill with card
numbers, it’s possible that a card will be selected again—i.e., deck[row] [column] will be
nonzero when it’s selected. This selection is simply ignored and other rows and columns
are repeatedly chosen at random until an unselected card is found. Eventually, the numbers
1 through 52 will occupy the 52 slots of the deck array. At this point, the deck of cards is
fully shuffled.

This shuffling algorithm can execute indefinitely if cards that have already been shuf-
fled are repeatedly selected at random. This phenomenon is known as indefinite post-
ponement. In this chapter’s exercises, we discuss a better shuffling algorithm that
eliminates the possibility of indefinite postponement.

To deal the first card, we search the array for deck[row][column] equal to 1. This is
accomplished with nested for statements that vary row from 0 to 3 and column from 0 to

Fig. 7.23 | Double-subscripted array representation of a deck of cards.

Performance Tip 7.3
Sometimes an algorithm that emerges in a “natural” way can contain subtle performance
problems, such as indefinite postponement. Seek algorithms that avoid indefinite post-
ponement.

0 543

deck[2][12] represents the King of Clubs

Clubs King

21

1

2

0

3

Diamonds

Clubs

Hearts

Spades

6 7 98 10 11 12
Ac

e

Si
x

Fiv
e

Fo
ur

Th
re

e

Tw
o

Se
ve

n

Ei
gh

t

Te
n

N
in

e

Ja
ck

Q
ue

en

Ki
ng

304 Chapter 7 C Pointers

string is essentially a pointer to its first character. So each entry in an array of strings is ac-
tually a pointer to the first character of a string. Consider the definition of string array
suit, which might be useful in representing a deck of cards.

The suit[4] portion of the definition indicates an array of 4 elements. The char * por-
tion of the declaration indicates that each element of array suit is of type “pointer to
char.” Qualifier const indicates that the strings pointed to by each element pointer will
not be modified. The four values to be placed in the array are "Hearts", "Diamonds",
"Clubs" and "Spades". Each is stored in memory as a null-terminated character string
that’s one character longer than the number of characters between quotes. The four strings
are 7, 9, 6 and 7 characters long, respectively. Although it appears as though these strings
are being placed in the suit array, only pointers are actually stored in the array
(Fig. 7.22). Each pointer points to the first character of its corresponding string. Thus,
even though the suit array is fixed in size, it provides access to character strings of any
length. This flexibility is one example of C’s powerful data-structuring capabilities.

The suits could have been placed in a two-dimensional array, in which each row
would represent a suit and each column would represent a letter from a suit name. Such a
data structure would have to have a fixed number of columns per row, and that number
would have to be as large as the largest string. Therefore, considerable memory could be
wasted when storing a large number of strings of which most were shorter than the longest
string. We use string arrays to represent a deck of cards in the next section.

7.11 Case Study: Card Shuffling and Dealing Simulation
In this section, we use random number generation to develop a card shuffling and dealing
simulation program. This program can then be used to implement programs that play
specific card games. To reveal some subtle performance problems, we’ve intentionally used
suboptimal shuffling and dealing algorithms. In this chapter’s exercises and in Chapter 10,
we develop more efficient algorithms.

Using the top-down, stepwise refinement approach, we develop a program that will
shuffle a deck of 52 playing cards and then deal each of the 52 cards. The top-down
approach is particularly useful in attacking larger, more complex problems than you’ve
seen in earlier chapters.

const char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades"
};

Fig. 7.22 | Graphical representation of the suit array.

'S'suit[3]

suit[2]

suit[1]

suit[0]

'p' 'a' 'd' 'e' 's' '\0'

'C' 'l' 'u' 'b' 's' '\0'

'D' 'i' 'a' 'm' 'o' 'n' 'd' 's' '\0'

'H' 'e' 'a' 'r' 't' 's' '\0'

26

Pointers to Functions

Ø A pointer to a function contains address of function in the
memory.

7.12 Pointers to Functions 313

Using Function Pointers to Create a Menu-Driven System
A common use of function pointers is in text-based menu-driven systems. A user is prompt-
ed to select an option from a menu (possibly from 1 to 5) by typing the menu item’s num-
ber. Each option is serviced by a different function. Pointers to each function are stored in
an array of pointers to functions. The user’s choice is used as a subscript in the array, and
the pointer in the array is used to call the function.

Figure 7.28 provides a generic example of the mechanics of defining and using an
array of pointers to functions. We define three functions—function1, function2 and
function3—that each take an integer argument and return nothing. We store pointers to
these three functions in array f, which is defined in line 14.

1 // Fig. 7.28: fig07_28.c
2 // Demonstrating an array of pointers to functions.
3 #include <stdio.h>
4
5 // prototypes
6
7
8
9

10 int main(void)
11 {
12
13
14
15
16 size_t choice; // variable to hold user's choice
17
18 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
19 scanf("%u", &choice);
20
21 // process user's choice
22 while (choice >= 0 && choice < 3) {
23
24
25
26
27
28 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
29 scanf("%u", &choice);
30 } // end while
31
32 puts("Program execution completed.");
33 } // end main
34
35
36 {
37 printf("You entered %d so function1 was called\n\n", a);
38 } // end function1
39

Fig. 7.28 | Demonstrating an array of pointers to functions. (Part 1 of 2.)

void function1(int a);
void function2(int b);
void function3(int c);

// initialize array of 3 pointers to functions that each take an
// int argument and return void
void (*f[3])(int) = { function1, function2, function3 };

// invoke function at location choice in array f and pass
// choice as an argument
(*f[choice])(choice);

void function1(int a)

7.12 Pointers to Functions 313

Using Function Pointers to Create a Menu-Driven System
A common use of function pointers is in text-based menu-driven systems. A user is prompt-
ed to select an option from a menu (possibly from 1 to 5) by typing the menu item’s num-
ber. Each option is serviced by a different function. Pointers to each function are stored in
an array of pointers to functions. The user’s choice is used as a subscript in the array, and
the pointer in the array is used to call the function.

Figure 7.28 provides a generic example of the mechanics of defining and using an
array of pointers to functions. We define three functions—function1, function2 and
function3—that each take an integer argument and return nothing. We store pointers to
these three functions in array f, which is defined in line 14.

1 // Fig. 7.28: fig07_28.c
2 // Demonstrating an array of pointers to functions.
3 #include <stdio.h>
4
5 // prototypes
6
7
8
9

10 int main(void)
11 {
12
13
14
15
16 size_t choice; // variable to hold user's choice
17
18 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
19 scanf("%u", &choice);
20
21 // process user's choice
22 while (choice >= 0 && choice < 3) {
23
24
25
26
27
28 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
29 scanf("%u", &choice);
30 } // end while
31
32 puts("Program execution completed.");
33 } // end main
34
35
36 {
37 printf("You entered %d so function1 was called\n\n", a);
38 } // end function1
39

Fig. 7.28 | Demonstrating an array of pointers to functions. (Part 1 of 2.)

void function1(int a);
void function2(int b);
void function3(int c);

// initialize array of 3 pointers to functions that each take an
// int argument and return void
void (*f[3])(int) = { function1, function2, function3 };

// invoke function at location choice in array f and pass
// choice as an argument
(*f[choice])(choice);

void function1(int a)

7.12 Pointers to Functions 313

Using Function Pointers to Create a Menu-Driven System
A common use of function pointers is in text-based menu-driven systems. A user is prompt-
ed to select an option from a menu (possibly from 1 to 5) by typing the menu item’s num-
ber. Each option is serviced by a different function. Pointers to each function are stored in
an array of pointers to functions. The user’s choice is used as a subscript in the array, and
the pointer in the array is used to call the function.

Figure 7.28 provides a generic example of the mechanics of defining and using an
array of pointers to functions. We define three functions—function1, function2 and
function3—that each take an integer argument and return nothing. We store pointers to
these three functions in array f, which is defined in line 14.

1 // Fig. 7.28: fig07_28.c
2 // Demonstrating an array of pointers to functions.
3 #include <stdio.h>
4
5 // prototypes
6
7
8
9

10 int main(void)
11 {
12
13
14
15
16 size_t choice; // variable to hold user's choice
17
18 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
19 scanf("%u", &choice);
20
21 // process user's choice
22 while (choice >= 0 && choice < 3) {
23
24
25
26
27
28 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
29 scanf("%u", &choice);
30 } // end while
31
32 puts("Program execution completed.");
33 } // end main
34
35
36 {
37 printf("You entered %d so function1 was called\n\n", a);
38 } // end function1
39

Fig. 7.28 | Demonstrating an array of pointers to functions. (Part 1 of 2.)

void function1(int a);
void function2(int b);
void function3(int c);

// initialize array of 3 pointers to functions that each take an
// int argument and return void
void (*f[3])(int) = { function1, function2, function3 };

// invoke function at location choice in array f and pass
// choice as an argument
(*f[choice])(choice);

void function1(int a)

27

Stack - Push and Pop with Pointers
3997.5 • Array Arguments

 FIGURE 7.13 Functions push and pop

 1. void
 2. push(char stack[], /* input/output - the stack */
 3. char item, /* input - data being pushed onto the stack */
 4. int *top, /* input/output - pointer to top of stack */
 5. int max_size) /* input - maximum size of stack */
 6. {
 7. if (*top < max_size-1) {
 8. ++(*top);
 9. stack[*top] = item;
 10. }
 11. }
 12.
 13. char
 14. pop(char stack[], /* input/output - the stack */
 15. int *top) /* input/output - pointer to top of stack */
 16. {
 17. char item; /* value popped off the stack */
 18.
 19. if (*top >= 0) {
 20. item = stack[*top];
 21. --(*top);
 22. } else {
 23. item = STACK_EMPTY;
 24. }
 25.
 26. return (item);
 27. }

 EXERCISES FOR SECTION 7.5

 Self-Check

 1. When is it better to pass an entire array of data to a function rather than indi-
vidual elements?

 2. Assume a main function contains declarations for three type double arrays—
 c , d , and e , each with six elements. Also, assume that values have been stored
in all array elements. Explain the effect of each valid call to add_arrays (see
 Fig. 7.8). Explain why each invalid call is invalid.

 a. add_arrays(ar1, ar2, c, 6);
 b. add_arrays(c[6], d[6], e[6], 6);

28

Calculate Execution Time
Ø #include <time.h>
Ø clock_t start, end;
Ø start = clock();
Ø // Write the code that needs to be timed
Ø end = clock();
Ø double time_taken = ((double)(end-start)) /

CLOCKS_PER_SEC;
Ø printf("The time taken for this program is %lf\n",

time_taken);

