
1

Programming for 
Engineers

Arrays
ICEN 200– Spring 2018
Prof. Dola Saha



2

Array 

Ø Arrays are data structures consisting of related data 
items of the same type. 

Ø A group of contiguous memory locations that all have the 
same type. 

Ø To refer to a particular location or element in the array
§ Array’s name 
§ Position number of the particular element in the array



3

Example Array



4

Array indexing

Ø The first element in every array is the zeroth element. 
Ø An array name, like other identifiers, can contain only 

letters, digits and underscores and cannot begin with 
a digit.

Ø The position number within square brackets is called 
an index or subscript. 

Ø An index must be an integer or an integer expression
§ array_name[x], array_name[x+y], etc. 

Ø For example, if a = 5 and b = 6, then the statement
o c[a + b] += 2;

adds 2 to array element c[11]. 



5

Array in memory

Ø Array occupies contiguous space in memory
Ø The following definition reserves 12 elements for integer 

array c, which has indices in the range 0-11.
o int c[12];

Ø The definition 
o int b[100]; double x[27];

reserves 100 elements for integer array b and 27 
elements for double array x.

Ø Like any other variables, uninitialized array elements 
contain garbage values.



6

Initializing array

Output



7

Use of size_t

Ø Notice that the variable i is declared to be of type 
size_t, which according to the C standard represents 
an unsigned integral type. 

Ø This type is recommended for any variable that 
represents an array’s size or an array’s indices. 

Ø Type size_t is defined in header <stddef.h>, which 
is often included by other headers (such as 
<stdio.h>). 

Ø [Note: If you attempt to compile Fig. 6.3 and receive 
errors, simply include <stddef.h> in your program.]



8

Initializing with initializer list

Output



9

Initializing with fewer initializers

Ø If there are fewer initializers than elements in the array, 
the remaining elements are initialized to zero. 

Ø Example:
// initializes entire array to zeros
int n[10] = {0}; 

Ø The array definition 
o int n[5] = {32, 27, 64, 18, 95, 14}; 

causes a syntax error because there are six initializers 
and only five array elements.



10

Initializing without array size

Ø If the array size is omitted from a definition with an 
initializer list, the number of elements in the array will be 
the number of elements in the initializer list. 

Ø For example, 
o int n[] = {1, 2, 3, 4, 5};

would create a five-element array initialized with the 
indicated values. 



11

Initializing to even list

Output



12

Preprocessor

Ø The #define preprocessor directive is introduced in 
this program. 

Ø #define SIZE 5
§ defines a symbolic constant SIZE whose value is 5. 

Ø A symbolic constant is an identifier that’s replaced with 
replacement text by the C preprocessor before the 
program is compiled. 

Ø Using symbolic constants to specify array sizes makes 
programs more modifiable. 



13

Adding elements of an array



14

Using Arrays to Summarize Poll (1)



15

Using Arrays to Summarize Poll (2)



16

Histogram with Array elements (1)



17

Histogram with Array elements (1)



18

Character Arrays & String Representation
Ø Store strings in character arrays. 
Ø So far, the only string-processing capability we have is 

outputting a string with printf. 
Ø A string such as "hello" is really an array of individual 

characters in C.
Ø A character array can be initialized using a string literal. 
Ø For example, 

o char string1[] = "first";
initializes the elements of array string1 to the 
individual characters in the string literal "first". 



19

Size of Character Array
Ø In this case, the size of array string1 is 

determined by the compiler based on the length of 
the string. 

Ø The string "first" contains five characters plus a 
special string-termination character called the null 
character. 

Ø Thus, array string1 actually contains six elements. 
Ø The character constant representing the null 

character is '\0'. 
Ø All strings in C end with this character. 



20

Character Array Indexing
Ø The preceding definition is equivalent to 

o char string1[] = 
{'f', 'i', 'r', 's', 't', '\0'};

Ø Because a string is really an array of characters, we can 
access individual characters in a string directly using 
array index notation. 

Ø For example, string1[0] is the character 'f' and 
string1[3] is the character 's'.



21

Scanning string
Ø We also can input a string directly into a character array from the 

keyboard using scanf and the conversion specifier %s. 
Ø For example, 

o char string2[20];

creates a character array capable of storing a string of at most 19 
characters and a terminating null character. 

Ø The statement
o scanf("%19s", string2);

reads a string from the keyboard into string2. 
Ø The name of the array is passed to scanf without the preceding &

used with nonstring variables. 
Ø The & is normally used to provide scanf with a variable’s location

in memory so that a value can be stored there. 



22

Scanning string
Ø Function scanf will read characters until a space, tab, 

newline or end-of-file indicator is encountered. 

Ø The string2 should be no longer than 19 characters to 
leave room for the terminating null character. 

Ø If the user types 20 or more characters, your program may 
crash or create a security vulerability. 

Ø For this reason, we used the conversion specifier %19s so 
that scanf reads a maximum of 19 characters and does not 
write characters into memory beyond the end of the array 
string2. 



23

Memory Management in Scanning String

Ø It’s your responsibility to ensure that the array into which 
the string is read is capable of holding any string that the 
user types at the keyboard. 

Ø Function scanf does not check how large the array is. 

Ø Thus, scanf can write beyond the end of the array. 

Ø You can use gets(text) to get the text from user.



24

Printing String

Ø A character array representing a string can be output with 
printf and the %s conversion specifier.

Ø

Ø The array string2 is printed with the statement
o printf("%s\n", string2);

Ø Function printf, like scanf, does not check how 
large the character array is. 

Ø The characters of the string are printed until a 
terminating null character is encountered.



25

Treating Character Arrays as String (1)



26

Treating Character Arrays as String (2)



27

Passing Arrays to Functions
Ø To pass an array argument to a function, specify the array’s 

name without any brackets. 
Ø For example, 

int hourlyTemperatures[HOURS_IN_A_DAY];
modifyArray(hourlyTemperatures, HOURS_IN_A_DAY);

the function call passes array hourlyTemperatures and its size 
to function modifyArray. 

Ø The name of the array evaluates to the address of the first 
element of the array. 

Ø The called function can modify the element values in the 
callers’ original arrays. 



28

Passing Array to Functions (1)



29

Passing Array to Functions (2)



30

Passing Array to Functions (3)



31

Passing Array to Functions (4)



32

Protecting Array Elements 

Ø Function tryToModifyArray is defined with 
parameter const int b[], which specifies that array b
is constant and cannot be modified. 

Ø The output shows the error messages produced by the 
compiler—the errors may be different for your compiler. 



33

Classwork Assignment

Ø Search an Array: Write a program to initialize an array of 
size S with an initializer list. Also get a value for num1
from user. Pass the array as well as num1 to a function. 
Within the function, check each element of array whether 
it matches num1. If it matches, return 1, else return 0 to 
the main function.



34

Binary Search – searching in a sorted array

Ø The linear searching method works well for small or 
unsorted arrays. 

Ø However, for large arrays linear searching is 
inefficient. 

Ø If the array is sorted, the high-speed binary search 
technique can be used. 

Ø The binary search algorithm eliminates from 
consideration one-half of the elements in a sorted 
array after each comparison. 



35

Binary Search – searching in a sorted array
Ø The algorithm locates the middle element of the array and 

compares it to the search key. 
Ø If they’re equal, the search key is found and the index of 

that element is returned. 
Ø If they’re not equal, the problem is reduced to searching 

one-half of the array. 
Ø If the search key is less than the middle element of the 

array, the first half of the array is searched, otherwise the 
second half of the array is searched. 



36

Demo

Ø Demo from Princeton
https://www.cs.princeton.edu/courses/archive/fall06/cos226/demo/demo-
bsearch.ppt



37

Binary Search – C code (1)



38

Binary Search – C code (2)



39

Binary Search – C code (3)



40

Binary Search – C code (4)



41

Binary Search – C code (5)



42

Binary Search – C code (6)



43

Binary Search – C code (7)



44

Multidimensional Arrays
Ø Arrays in C can have multiple indices. 
Ø A common use of multidimensional arrays is to represent 

tables of values consisting of information arranged in 
rows and columns. 

Ø Multidimensional arrays can have more than two indices. 

3x4 Array



45

Initialization
Ø Where it is defined
§ Braces for each dimension
o int b[2][2] = {{1, 2}, {3, 4}};

§ If there are not enough initializers for a given row, the remaining 
elements of that row are initialized to 0. 

o int b[2][2] = {{1}, {3, 4}};
§ If the braces around each sublist are removed from the array1

initializer list, the compiler initializes the elements of the first row 
followed by the elements of the second row. 

o int b[2][2] = {1, 2, 3, 4};



46

Multidimensional Array Example Code (1)



47

Multidimensional Array Example Code (2)



48

Two Dimensional Array Manipulation

Ø Example
§ studentGrades[3][4]
§ Row of the array represents a student.
§ Column represents a grade on one of the four exams the students took during the 

semester. 

Ø The array manipulations are performed by four functions. 
§ Function minimum determines the lowest grade of any student for the semester. 
§ Function maximum determines the highest grade of any student for the semester. 
§ Function average determines a particular student’s semester average. 
§ Function printArray outputs the two-dimensional array in a neat, tabular format.



49

2D Array Manipulation Code (1)



50

2D Array Manipulation Code (2)



51

2D Array Manipulation Code (3)



52

2D Array Manipulation Code (4)



53

2D Array Manipulation Code (5)



54

2D Array Manipulation Code (6)



55

2D Array Manipulation Code (7)



56

Lab Assignment

Ø Matrix Addition/Subtraction – two matrices should have 
same number of rows and columns.

https://en.wikipedia.org/wiki/Matrix_addition

Addition Subtraction



57

Ø If A is a 𝑛×𝑚 matrix and B is a 𝑚×𝑝 matrix, then 
Matrix Multiplication is given by following formula

Matrix Multiplication

https://en.wikipedia.org/wiki/Matrix_multiplication



58

Matrix Multiplication - Illustrated



59

Variable Length Array
Ø In early versions of C, all arrays had constant size. 
Ø If size is unknown at compilation time
§ Use dynamic memory allocation with malloc

Ø The C standard allows a variable-length array 
§ An array whose length, or size, is defined in terms of an 

expression evaluated at execution time. 



60

Variable Length Array Code (1)



61

Variable Length Array Code (2)



62

Variable Length Array Code (3)



63

Variable Length Array Code (4)



64

Variable Length Array Code (5)



65

Scan string with space

Ø Function scanf will read characters until a space, 
tab, newline or end-of-file indicator is encountered.

Ø Use fgets function.
§ char *fgets(char *str, int n, FILE 
*stream)

§ str – character array 
§ n – maximum number of characters to be read
§ stream – where we are reading the data from



66

Classwork

Ø Reverse an array



67

Classwork

Ø Represent a 2D array by a 1D array



68

Classwork

Ø Insert an element in a sorted array 



69

Classwork

Ø Find second minimum


