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Array 

Ø Arrays are data structures consisting of related data 
items of the same type. 

Ø A group of contiguous memory locations that all have the 
same type. 

Ø To refer to a particular location or element in the array
§ Array’s name 
§ Position number of the particular element in the array
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Example Array
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Array indexing

Ø The first element in every array is the zeroth element. 
Ø An array name, like other identifiers, can contain only 

letters, digits and underscores and cannot begin with 
a digit.

Ø The position number within square brackets is called 
an index or subscript. 

Ø An index must be an integer or an integer expression
§ array_name[x], array_name[x+y], etc. 

Ø For example, if a = 5 and b = 6, then the statement
o c[a + b] += 2;

adds 2 to array element c[11]. 
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Array in memory

Ø Array occupies contiguous space in memory
Ø The following definition reserves 12 elements for integer 

array c, which has indices in the range 0-11.
o int c[12];

Ø The definition 
o int b[100]; double x[27];

reserves 100 elements for integer array b and 27 
elements for double array x.

Ø Like any other variables, uninitialized array elements 
contain garbage values.
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Initializing array

Output
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Use of size_t

Ø Notice that the variable i is declared to be of type 
size_t, which according to the C standard represents 
an unsigned integral type. 

Ø This type is recommended for any variable that 
represents an array’s size or an array’s indices. 

Ø Type size_t is defined in header <stddef.h>, which 
is often included by other headers (such as 
<stdio.h>). 

Ø [Note: If you attempt to compile Fig. 6.3 and receive 
errors, simply include <stddef.h> in your program.]
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Initializing with initializer list

Output
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Initializing with fewer initializers

Ø If there are fewer initializers than elements in the array, 
the remaining elements are initialized to zero. 

Ø Example:
// initializes entire array to zeros
int n[10] = {0}; 

Ø The array definition 
o int n[5] = {32, 27, 64, 18, 95, 14}; 

causes a syntax error because there are six initializers 
and only five array elements.
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Initializing without array size

Ø If the array size is omitted from a definition with an 
initializer list, the number of elements in the array will be 
the number of elements in the initializer list. 

Ø For example, 
o int n[] = {1, 2, 3, 4, 5};

would create a five-element array initialized with the 
indicated values. 
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Initializing to even list

Output
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Preprocessor

Ø The #define preprocessor directive is introduced in 
this program. 

Ø #define SIZE 5
§ defines a symbolic constant SIZE whose value is 5. 

Ø A symbolic constant is an identifier that’s replaced with 
replacement text by the C preprocessor before the 
program is compiled. 

Ø Using symbolic constants to specify array sizes makes 
programs more modifiable. 
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Adding elements of an array
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Using Arrays to Summarize Poll (1)
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Using Arrays to Summarize Poll (2)
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Histogram with Array elements (1)
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Histogram with Array elements (1)
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Character Arrays & String Representation
Ø Store strings in character arrays. 
Ø So far, the only string-processing capability we have is 

outputting a string with printf. 
Ø A string such as "hello" is really an array of individual 

characters in C.
Ø A character array can be initialized using a string literal. 
Ø For example, 

o char string1[] = "first";
initializes the elements of array string1 to the 
individual characters in the string literal "first". 
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Size of Character Array
Ø In this case, the size of array string1 is 

determined by the compiler based on the length of 
the string. 

Ø The string "first" contains five characters plus a 
special string-termination character called the null 
character. 

Ø Thus, array string1 actually contains six elements. 
Ø The character constant representing the null 

character is '\0'. 
Ø All strings in C end with this character. 
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Character Array Indexing
Ø The preceding definition is equivalent to 

o char string1[] = 
{'f', 'i', 'r', 's', 't', '\0'};

Ø Because a string is really an array of characters, we can 
access individual characters in a string directly using 
array index notation. 

Ø For example, string1[0] is the character 'f' and 
string1[3] is the character 's'.
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Scanning string
Ø We also can input a string directly into a character array from the 

keyboard using scanf and the conversion specifier %s. 
Ø For example, 

o char string2[20];

creates a character array capable of storing a string of at most 19 
characters and a terminating null character. 

Ø The statement
o scanf("%19s", string2);

reads a string from the keyboard into string2. 
Ø The name of the array is passed to scanf without the preceding &

used with nonstring variables. 
Ø The & is normally used to provide scanf with a variable’s location

in memory so that a value can be stored there. 
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Scanning string
Ø Function scanf will read characters until a space, tab, 

newline or end-of-file indicator is encountered. 

Ø The string2 should be no longer than 19 characters to 
leave room for the terminating null character. 

Ø If the user types 20 or more characters, your program may 
crash or create a security vulerability. 

Ø For this reason, we used the conversion specifier %19s so 
that scanf reads a maximum of 19 characters and does not 
write characters into memory beyond the end of the array 
string2. 
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Memory Management in Scanning String

Ø It’s your responsibility to ensure that the array into which 
the string is read is capable of holding any string that the 
user types at the keyboard. 

Ø Function scanf does not check how large the array is. 

Ø Thus, scanf can write beyond the end of the array. 

Ø You can use gets(text) to get the text from user.
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Printing String

Ø A character array representing a string can be output with 
printf and the %s conversion specifier.

Ø

Ø The array string2 is printed with the statement
o printf("%s\n", string2);

Ø Function printf, like scanf, does not check how 
large the character array is. 

Ø The characters of the string are printed until a 
terminating null character is encountered.
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Treating Character Arrays as String (1)



26

Treating Character Arrays as String (2)
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Passing Arrays to Functions
Ø To pass an array argument to a function, specify the array’s 

name without any brackets. 
Ø For example, 

int hourlyTemperatures[HOURS_IN_A_DAY];
modifyArray(hourlyTemperatures, HOURS_IN_A_DAY);

the function call passes array hourlyTemperatures and its size 
to function modifyArray. 

Ø The name of the array evaluates to the address of the first 
element of the array. 

Ø The called function can modify the element values in the 
callers’ original arrays. 
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Passing Array to Functions (1)
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Passing Array to Functions (2)
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Passing Array to Functions (3)
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Passing Array to Functions (4)
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Protecting Array Elements 

Ø Function tryToModifyArray is defined with 
parameter const int b[], which specifies that array b
is constant and cannot be modified. 

Ø The output shows the error messages produced by the 
compiler—the errors may be different for your compiler. 
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Classwork Assignment

Ø Search an Array: Write a program to initialize an array of 
size S with an initializer list. Also get a value for num1
from user. Pass the array as well as num1 to a function. 
Within the function, check each element of array whether 
it matches num1. If it matches, return 1, else return 0 to 
the main function.
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Binary Search – searching in a sorted array

Ø The linear searching method works well for small or 
unsorted arrays. 

Ø However, for large arrays linear searching is 
inefficient. 

Ø If the array is sorted, the high-speed binary search 
technique can be used. 

Ø The binary search algorithm eliminates from 
consideration one-half of the elements in a sorted 
array after each comparison. 
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Binary Search – searching in a sorted array
Ø The algorithm locates the middle element of the array and 

compares it to the search key. 
Ø If they’re equal, the search key is found and the index of 

that element is returned. 
Ø If they’re not equal, the problem is reduced to searching 

one-half of the array. 
Ø If the search key is less than the middle element of the 

array, the first half of the array is searched, otherwise the 
second half of the array is searched. 
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Demo

Ø Demo from Princeton
https://www.cs.princeton.edu/courses/archive/fall06/cos226/demo/demo-
bsearch.ppt
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Binary Search – C code (1)
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Binary Search – C code (2)
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Binary Search – C code (3)
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Binary Search – C code (4)
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Binary Search – C code (5)
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Binary Search – C code (6)
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Binary Search – C code (7)
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Multidimensional Arrays
Ø Arrays in C can have multiple indices. 
Ø A common use of multidimensional arrays is to represent 

tables of values consisting of information arranged in 
rows and columns. 

Ø Multidimensional arrays can have more than two indices. 

3x4 Array
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Initialization
Ø Where it is defined
§ Braces for each dimension
o int b[2][2] = {{1, 2}, {3, 4}};

§ If there are not enough initializers for a given row, the remaining 
elements of that row are initialized to 0. 

o int b[2][2] = {{1}, {3, 4}};
§ If the braces around each sublist are removed from the array1

initializer list, the compiler initializes the elements of the first row 
followed by the elements of the second row. 

o int b[2][2] = {1, 2, 3, 4};
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Multidimensional Array Example Code (1)
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Multidimensional Array Example Code (2)
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Two Dimensional Array Manipulation

Ø Example
§ studentGrades[3][4]
§ Row of the array represents a student.
§ Column represents a grade on one of the four exams the students took during the 

semester. 

Ø The array manipulations are performed by four functions. 
§ Function minimum determines the lowest grade of any student for the semester. 
§ Function maximum determines the highest grade of any student for the semester. 
§ Function average determines a particular student’s semester average. 
§ Function printArray outputs the two-dimensional array in a neat, tabular format.



49

2D Array Manipulation Code (1)
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2D Array Manipulation Code (2)
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2D Array Manipulation Code (3)
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2D Array Manipulation Code (4)
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2D Array Manipulation Code (5)
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2D Array Manipulation Code (6)
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2D Array Manipulation Code (7)
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Lab Assignment

Ø Matrix Addition/Subtraction – two matrices should have 
same number of rows and columns.

https://en.wikipedia.org/wiki/Matrix_addition

Addition Subtraction
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Ø If A is a 𝑛×𝑚 matrix and B is a 𝑚×𝑝 matrix, then 
Matrix Multiplication is given by following formula

Matrix Multiplication

https://en.wikipedia.org/wiki/Matrix_multiplication
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Matrix Multiplication - Illustrated
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Variable Length Array
Ø In early versions of C, all arrays had constant size. 
Ø If size is unknown at compilation time
§ Use dynamic memory allocation with malloc

Ø The C standard allows a variable-length array 
§ An array whose length, or size, is defined in terms of an 

expression evaluated at execution time. 
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Variable Length Array Code (1)
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Variable Length Array Code (2)
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Variable Length Array Code (3)
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Variable Length Array Code (4)
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Variable Length Array Code (5)
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Scan string with space

Ø Function scanf will read characters until a space, 
tab, newline or end-of-file indicator is encountered.

Ø Use fgets function.
§ char *fgets(char *str, int n, FILE 
*stream)

§ str – character array 
§ n – maximum number of characters to be read
§ stream – where we are reading the data from
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Classwork

Ø Reverse an array
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Classwork

Ø Represent a 2D array by a 1D array
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Classwork

Ø Insert an element in a sorted array 
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Classwork

Ø Find second minimum


