
1

Programming for
Engineers

Functions
ICEN 200– Spring 2018
Prof. Dola Saha

2

Introduction

Ø Real world problems are larger, more complex
Ø Top down approach
Ø Modularize – divide and control
Ø Easier to track smaller problems / modules
Ø Repeated set of statements

3

Example: Area and circumference of a circle

4

Computing Rim Area of a Flat Washer

5

C Code (1)

6

C Code (2)

7

Functions

Ø Functions allow us to
§ modularize a program
§ reuse the code

Ø Two types:
§ Programmer/user write, called programmer-defined functions
§ prepackaged functions available in the C standard library.

Ø Input Variables
Ø Output value, which is returned
Ø Function body

8

Function

Ø The statements defining the function are written
only once, and the statements are hidden from other
functions.

Ø Functions are invoked by a function call, which
specifies the function name and provides information
(as arguments) that the called function needs to
perform its designated task.

9

Modularizing Program

Ø Analogy : Hierarchical management
Ø A boss (the calling function or caller) asks a worker (the

called function) to perform a task and report back when
the task is done

10

Function

Ø All variables defined in function definitions are local
variables—they can be accessed only in the function in
which they’re defined.

Ø Most functions have a list of parameters that provide the
means for communicating information between functions.

Ø A function’s parameters are also local variables of that
function.

Ø The format of a function definition is
return-value-type function-name(parameter-list)
{

definitions
statements

}

11

Example of User-defined Function

12

Function Definition
Ø Function square is invoked or called in main within the printf

statement
printf("%d ", square(x)); // function call

Ø Function square receives a copy of the value of x in the parameter y.
Ø Then square calculates y * y.
Ø The result is passed back returned to function printf in main where

square was invoked, and printf displays the result.
Ø This process is repeated 10 times using the for statement.

13

Function Definition… cont.
Ø The definition of function square shows that square expects an

integer parameter y.
Ø The keyword int preceding the function name indicates that

square returns an integer result.
Ø The return statement in square passes the value of the

expression y * y (that is, the result of the calculation) back to the
calling function.

Ø int square(int y); // function prototype
§ The int in parentheses informs the compiler that square expects to receive an

integer value from the caller.
§ The int to the left of the function name square informs the compiler that square

returns an integer result to the caller.

14

Function Definition… cont.
Ø The compiler refers to the function prototype to check that any calls to

square contain
§ the correct return type
§ the correct number of arguments
§ the correct argument types
§ the arguments are in the correct order

Ø The function-name is any valid identifier.
Ø The return-value-type is the data type of the result returned to the

caller.
Ø The return-value-type void indicates that a function does not return a

value.
Ø Together, the return-value-type, function-name and parameter-list are

sometimes referred to as the function header.

15

Function Definition… cont.

Ø The parameter-list is a comma-separated list that
specifies the parameters received by the function when
it’s called.

Ø If a function does not receive any values, parameter-list is
void.

Ø A type must be listed explicitly for each parameter.
Ø The definitions and statements within braces form the

function body, which is also referred to as a block.
Ø Variables can be declared in any block, and blocks can be

nested.

16

Return Control

Ø Returns control to calling function after function
execution

§ the function does not return a result, control returns immediately after
the execution of function body

§ Returns after executing the statement return;
§ Returns the value of the expression to the caller by the statement -

return expression;

17

main() ’s Return Type

Ø main has an int return type.
Ø The return value of main is used to indicate whether the

program executed correctly.
Ø In earlier versions of C, we had to explicitly place

return 0;

Ø at the end of main—0 indicates that a program ran
successfully.

Ø main implicitly returns 0 if we omit the return statement.
Ø We can explicitly return non-zero values from main to

indicate that a problem occurred during your program’s
execution.

18

Function Example: maximum()

19

Function Example: maximum()

20

Write a function to calculate area of a washer

Ø s

21

Compiling your own code

1

2

22

Compiling your own code

Ø pwd – print work directory
Ø cd directory_name – change directory
Ø ls – list the content of current directory

3

23

Linking with Math Library

Ø gcc –o object_filename c_file.c –lm
§ -l link to the library
§ -lm is specific for math

Ø Run the object file
§ ./object_filename

4

24

Math Library Functions
Ø Performs common mathematical calculations.

25

More Math Library Functions

Ø #include <math.h>

26

Random Number Generation

Ø Why?
§ For example, a program that simulates coin tossing might require only

0 for “heads” and 1 for “tails.”
§ A dice-rolling program that simulates a six-sided die would require

random integers from 1 to 6.

Ø The rand function generates an integer between 0 and
RAND_MAX (a symbolic constant defined in the
<stdlib.h> header).

§ i = rand();

Ø To get a range of values, use remainder operation.
§ i = rand()%N; // random values in {0 to N-1}

27

Scaling and Shifting
Ø Generate Random Number
Ø r_num = rand();

Ø Scale
Ø r_scaled = r_num()%N;

Ø Shift
Ø r_shifted = r_scaled+M;

0 RAND_MAX

0 N

M N+M

28

Random Number Generation Code

29

Pseudorandom numbers
Ø Function rand() generates pseudorandom numbers.
Ø Calling rand() repeatedly produces a sequence of numbers

that appears to be random.
Ø Randomizing
§ A program conditioned to produce a different sequence of random

numbers for each execution
§ Accomplished with the standard library function srand().

Ø Function srand() takes an unsigned integer argument and
seeds function rand() to produce a different sequence of
random numbers for each execution of the program.

30

Randomizing with a seed

31

Output

32

Randomize without providing a seed
Ø To randomize without entering a seed each time, use a statement like

srand(time(NULL));

Ø The function prototype for time is in <time.h>.	
Ø Function time returns the number of seconds that have passed since

midnight on January 1, 1970.
Ø This value is converted to an unsigned integer and used as the seed to

the random number generator.

33

Randomize with time

34

Passing argument by value & by pointer

Pass by Value Pass by Pointer

A copy of argument’s value is made and passed
to the function

An address to the argument is passed to the
function

Changes to copy do not change the original
value

Changes to the value of the address does
change the original value

Most commonly used Should be used by trusted functions only

35

Example Pass-by-value & Pass-by-reference

Output

