
1

Programming for
Engineers

Iteration
ICEN 200– Spring 2018
Prof. Dola Saha

2

Data type conversions

Ø Grade average example
§ 𝑐𝑙𝑎𝑠𝑠	𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 	 ∑ ,-./0�

�
23450-	67	893/0298

§ Grade and number of students can be integers
§ Averages do not always evaluate to integer values, needs to be floating

point for accuracy.
§ The result of the calculation total / counter is an integer

because total and counter are both integer variables.

3

Explicit conversions
Ø Dividing two integers results in integer division in which any

fractional part of the calculation is truncated (i.e., lost).
Ø To produce a floating-point calculation with integer values, we

create temporary values that are floating-point numbers.
Ø C provides the unary cast operator to accomplish this task.
§ average = (float) total / counter;

Ø includes the cast operator (float), which creates a temporary
floating-point copy of its operand, total.

Ø Using a cast operator in this manner is called explicit conversion.
Ø The calculation now consists of a floating-point value (the

temporary float version of total) divided by the unsigned int
value stored in counter.

4

Implicit conversion
Ø C evaluates arithmetic expressions only in which the data

types of the operands are identical.
Ø To ensure that the operands are of the same type, the

compiler performs an operation called implicit conversion on
selected operands.

Ø For example, in an expression containing the data types
unsigned int and float, copies of unsigned int
operands are made and converted to float.

Ø In our example, after a copy of counter is made and
converted to float, the calculation is performed and the
result of the floating-point division is assigned to average.

5

Assignment operators
Ø C provides several assignment operators for abbreviating

assignment expressions.
Ø For example, the statement

o c = c + 3;
Ø can be abbreviated with the addition assignment

operator += as
o c += 3;

Ø The += operator
§ adds the value of the expression on the right of the operator to the

value of the variable on the left of the operator
§ and stores the result in the variable on the left of the operator.

6

Comparison of Prefix & Postfix Increments

7

Assignment operators

Ø Any statement of the form
o variable = variable operator expression;

Ø where operator is one of the binary operators +, -, *, /
or %, can be written in the form
o variable operator	= expression;

Ø Thus the assignment c += 3 adds 3 to c.

8

Assignment operator - examples

9

Unary Increment & Decrement Operators

10

Increment Example

11

Increment Example

Output

12

Precedence

13

for Iteration Statement - Syntax
for (initialization expression;

loop repetition condition;
update expression)

statement;

for (count_star = 0;
count_star < N;
count_star ++)

printf(“*”);

14

for Iteration Statement - Syntax

Ø The general format of the for statement is
for (initialization; condition; update expression) {

statement
}

where
§ the initialization expression initializes the loop-control variable (and

might define it),
§ the condition expression is the loop-continuation condition and
§ the update expression increments the control variable.

15

for Iteration Statement

Ø Counter-controlled iteration

16

Flow chart

17

for Iteration Statement – Common Error

Off-By-One Errors
Ø Notice that program uses the loop-continuation condition

counter <= 10.
Ø If you incorrectly wrote counter < 10, then the loop

would be executed only 9 times.
Ø This is a common logic error called an off-by-one error.

18

for Iteration Statement – Common Practice

Ø Start the loop from 0

for (i=0; i<10; i++)
printf(“It will be printed 10 times.\n”);

for (i=1; i<=10; i++)
printf(“It will be printed 10 times.\n”);

19

Optional Header in for Statement

Ø The three expressions in the for statement are
optional.

Ø If the condition expression is omitted, C assumes that
the condition is true, thus creating an infinite loop.

Ø You may omit the initialization expression if the
control variable is initialized elsewhere in the
program.

Ø The increment may be omitted if it’s calculated by
statements in the body of the for statement or if no
increment is needed.

20

Valid code snippets

for (;;)
printf(“The code is in infinite loop\n”);

int i=0;
for (; i<10; i++)

printf(“It will be printed 10 times.\n”);

int i=0;
for (; i<10;){

printf(“It will be printed 10 times.\n”);
i++;

}

21

Examples of varying control variable
Task
Vary the control variable from 1 to 100 in
increments of 1.

Vary the control variable from 100 to 1 in
increments of -1 (decrements of 1).

Vary the control variable from 7 to 77 in steps of
7.

Vary the control variable from 20 to 2 in steps of
-2.

Vary the control variable over the following
sequence of values: 2, 5, 8, 11, 14, 17.

Vary the control variable over the following
sequence of values: 44, 33, 22, 11, 0.

22

Examples of varying control variable
Task for Loop
Vary the control variable from 1 to 100 in
increments of 1.

for (i = 1; i <= 100; ++ i)

Vary the control variable from 100 to 1 in
increments of -1 (decrements of 1).

for (i = 100; i >= 1; --i)

Vary the control variable from 7 to 77 in steps of
7.

for (i = 7; i <= 77; i += 7)

Vary the control variable from 20 to 2 in steps of
-2.

for (i = 20; i >= 2; i -= 2)

Vary the control variable over the following
sequence of values: 2, 5, 8, 11, 14, 17.

for (j = 2; j <= 17; j += 3)

Vary the control variable over the following
sequence of values: 44, 33, 22, 11, 0.

for (j = 44; j >= 0; j -=
11)

23

For Statement Notes
Ø The initialization, loop-continuation condition and update expression

can contain arithmetic expressions.

Ø For example, if x = 2 and y = 10, the statement
for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to the statement
for (j = 2; j <= 80; j += 5)

Ø If the loop-continuation condition is initially false, the loop body
does not execute.

24

For Statement – Variable Declaration

Ø The first expression in a for statement can be replaced
by a declaration.

Ø This feature allows the programmer to declare a variable
for use by the loop:
for (int i = 0; i < n; i++)
…

Ø The variable i need not have been declared prior to this
statement.

25

For Statement – Scope of variable

Ø A variable declared by a for statement can’t be
accessed outside the body of the loop (we say that it’s
not visible outside the loop):
for (int i = 0; i < n; i++) {
…
printf("%d", i);
/* legal; i is visible inside

loop */
…

}
printf("%d", i); /*** WRONG ***/

26

For Statement – Control Variable Declaration

Ø Having a for statement declare its own control variable
is usually a good idea: it’s convenient and it can make
programs easier to understand.

Ø However, if the program needs to access the variable
after loop termination, it’s necessary to use the older
form of the for statement.

Ø A for statement may declare more than one variable,
provided that all variables have the same type:
for (int i = 0, j = 0; i < n; i++)
…

27

For Statement – Comma Operator

Ø On occasion, a for statement may need to have two (or
more) initialization expressions or one that increments
several variables each time through the loop.

Ø This effect can be accomplished by using a comma
expression as the first or third expression in the for
statement.

Ø A comma expression has the form
expr1 , expr2
where expr1 and expr2 are any two expressions.

28

For Statement – Comma Operator
Ø A comma expression is evaluated in two steps:
§ First, expr1 is evaluated and its value discarded.
§ Second, expr2 is evaluated; its value is the value of the entire expression.

Ø Evaluating expr1 should always have a side effect; if it doesn’t,
then expr1 serves no purpose.

Ø When the comma expression ++i, i + j is evaluated, i is first
incremented, then i + j is evaluated.

§ If i and j have the values 1 and 5, respectively, the value of the expression
will be 7, and i will be incremented to 2.

29

For Statement – Comma Operator

Ø The comma operator is left associative, so the compiler
interprets
i = 1, j = 2, k = i + j

as
((i = 1), (j = 2)), (k = (i + j))

Ø Since the left operand in a comma expression is
evaluated before the right operand, the assignments i =
1, j = 2, and k = i + j will be performed from left to
right.

30

For Statement – Comma Operator
Ø The comma operator makes it possible to “glue” two

expressions together to form a single expression.
Ø Certain macro definitions can benefit from the comma

operator.
Ø The for statement is the only other place where the comma

operator is likely to be found.
Ø Example:

for (sum = 0, i = 1; i <= N; i++)
sum += i;

Ø With additional commas, the for statement could initialize
more than two variables.

31

Nested for Loop
int row, col;
for (row=0; row<2; row++)

for (col=0; col<3; col++)
printf(“%d, %d\n”, row, col);

32

Nested for Loop
int row, col;
for (row=0; row<2; row++)

for (col=0; col<3; col++)
printf(“%d, %d\n”, row, col);

0, 0
0, 1
0, 2
1, 0
1, 1
1, 2

Sample Output

33

Application: Summing even numbers

34

Application: Compound Interest Calculation
Ø Consider the following problem statement:
§ A person invests $1000.00 in a savings account yielding 5% interest. Assuming that

all interest is left on deposit in the account, calculate and print the amount of money
in the account at the end of each year for 10 years. Use the following formula for
determining these amounts:

a = p(1 + r)n

where
p is the original amount invested (i.e., the principal)
r is the annual interest rate
n is the number of years
a is the amount on deposit at the end of the nth year.

35

C Code for Compound Interest Calculation

36

Output

37

do ... while Iteration Statement

Ø Similar to the while statement.
Ø do

statement
while (condition);

Ø The loop-continuation
condition after the loop
body is performed.

Ø The loop body will be
executed at least once.

Ø while (condition)

Ø The loop-continuation
condition is tested at the
beginning of the loop

38

Example do ... while Iteration Statement

39

Flowchart do ... while Iteration Statement

40

break and continue Statements

Ø Break
§ Used inside while, for, do…while, switch Statements
§ When executed, program exits the statements

Ø Continue
§ Used in while, for, do…while Statements
§ When executed, the loop-continuation test is evaluated immediately

after the continue statement is executed.
§ In the for statement, the increment expression is executed, then the

loop-continuation test is evaluated.

41

break Statement

42

continue Statement

43

Revisiting switch Statement

Ø If break is not used anywhere in
a switch statement, then each
time a match occurs in the
statement, the statements for all
the remaining cases will be
executed—called fallthrough.

Ø If no match occurs, the default
case is executed, and an error
message is printed.

44

Code Snippet (1)

45

Code Snippet (2)

46

Code Snippet (3)

47

Code Snippet (4) & Output

48

Logical Operators
Ø Used to form more complex conditions by combining simple

conditions.
Ø The logical operators are && (logical AND), || (logical OR)

and ! (logical NOT also called logical negation)
Ø Logical AND – used to ensure that two conditions are both

true before we choose a certain path of execution
Ø Logical OR – used to ensure that at least one condition is

true before we choose a certain path of execution
Ø Logical NOT – used to “reverse” the meaning of a condition.

49

Truth Table

Ø Table of Logic

50

Operator Precedence

51

Structured Program Summary (1)

52

Structured Program Summary (2)

53

Rules for forming structured programs

Ø Begin with the simplest flowchart
Ø Stacking Rule – Any rectangle (action) can be replaced by

two rectangles (actions) in sequence
Ø Nesting Rule – Any rectangle (action) can be replaced by

any control statement
Ø Stacking & Nesting Rule rules may be applied in any

order.

54

Simplest Flowchart

55

Stacking Rule

56

Nesting Rule

57

Structured Program Building Blocks

58

Structured Programming

Ø Structured programming promotes simplicity.
Ø Bohm and Jacopini showed that only three forms of

control are needed:
§ Sequence
§ Selection
§ Iteration

59

Structured Programming Options

Ø Sequence is straightforward.
Ø Selection is implemented in one of three ways:
§ if statement (single selection)
§ if…else statement (double selection)
§ switch statement (multiple selection)

Ø Iteration is implemented in one of three ways:
§ while statement
§ do…while statement
§ for statement

