
1

Programming for
Engineers

Structured Program
ICEN 360– Spring 2018
Prof. Dola Saha

2

Steps to writing a program

Ø Understand the problem
Ø Plan a solution
§ Step by step procedure

3

Algorithm

Ø The solution to any computing problem involves
executing a series of actions in a specific order.

Ø A procedure for solving a problem in terms of
§ the actions to be executed, and
§ the order in which these actions are to be executed

Ø is called an algorithm.
Ø Correctly specifying the order in which the actions are to

be executed is important.

4

Ø Example “rise-and-shine” algorithm

Order matters

In-Order

1. Get out of bed

2. Take of pajamas

3. Take a shower

4. Get dressed

5. Eat breakfast

6. Carpool to work

5

Ø Example “rise-and-shine” algorithm

Ø Specifying the order in which statements are to be
executed in a computer program is called program
control.

Order matters

In-Order Out-of-Order

1. Get out of bed 1. Get out of bed

2. Take off pajamas 2. Take off pajamas

3. Take a shower 3. Get dressed

4. Get dressed 4. Take a shower

5. Eat breakfast 5. Eat breakfast

6. Go to school 6. Go to school

6

Flow Chart

Ø Graphical representation of an algorithm
Ø Uses certain special-purpose symbols such as rectangles,

diamonds, rounded rectangles, and small circles
Ø Symbols are connected by arrows called flowlines

7

Flow Chart

Ø Rectangle symbol or action symbol indicate any type
of action including a calculation or an input/output
operation.

Ø The flowlines indicate the order in which the actions
are performed.

8

Pseudocode

Ø Artificial, informal, user-friendly, convenient, English-like
Ø They are NOT executed on computers
Ø Can be easily converted into ANY programming language
Ø Consists of actions and decision statements

9

Control Structures

Ø Sequential execution: statements are executed one after
another

Ø Transfer of control: Some C statements can specify that
next statement to be executed MAY NOT be the next
statement

10

Decision Making - Example

Ø Check condition
§ Is the distance between Albany to NYC more than Albany to Buffalo?
§ Is John’s grade greater than 60 ?

Ø Perform Tasks based on decision
§ If Albany to NYC is shorter, then I will drive to NYC
§ If Amy’s grade is greater than 60, then she passes

Ø Otherwise
§ I will drive to Buffalo
§ She fails

11

Selection Statement

Ø If Statement
§ If :
o Performs a set of actions if condition is TRUE,
o otherwise skip

§ If ... else :
o Performs a set of actions if condition is TRUE,
o otherwise performs a different set of actions

Ø Switch Statement:
§ Performs one of many different set of actions

Ø Used to choose among alternative courses of action.

12

Selection Statement in Flow Chart
Single Selection

Double Selection

13

Selection Statement in Pseudocode

If student’s grade is greater than or equal to 60
Print “Passed”

If student’s grade is greater than or equal to 60
Print “Passed”

else
Print “Failed”

14

Selection Statement in C

Ø if (grade >= 60) {
printf("Passed\n");

} // end if

Ø if (grade >= 60) {
printf("Passed\n");

} // end if
else {

printf("Failed\n");
} // end else

15

If Statement

Ø If the condition is true (i.e., the condition is met) the
statement in the body of the if statement is executed.

Ø If the condition is false (i.e., the condition isn’t met) the
body statement is not executed.

Ø Whether the body statement is executed or not, after the
if statement completes, execution proceeds with the
next statement after the if statement.

Ø Conditions in if statements are formed by using the
equality operators and relational operators.

16

If Statement

17

Relational & Equality Operators

18

Precedence of Operators

19

Example: Swap values of two variables

20

Conditional Operator (?)

Ø C’s only ternary operator—it takes three operands.
Ø The first operand is a condition.
Ø The second operand is the value for the entire

conditional expression if the condition is TRUE.
Ø The third operand is the value for the entire conditional

expression if the condition is FALSE.
Ø Example:
§ printf(grade >= 60 ? "Passed" : "Failed");

21

Classroom Discussion

Ø Develop an algorithm to find a number is odd or even
Ø Write a pseudocode to check if a number is odd or even
Ø Write a C code that takes an integer as input from the

user and prints out whether it is odd or even number

22

Example C Program

23

Example C Program… continued

24

Example C Program …. Output

25

Nested if… else Statements
Ø if (grade >= 90)

puts("A");
else

if (grade >= 80)
puts("B");

else
if (grade >= 70)

puts("C");
else

if (grade >= 60)
puts("D");

else
puts("F");

26

If … else if Statement
Ø if (grade >= 90)

puts("A");
else if (grade >= 80)

puts("B");
else if (grade >= 70)

puts("C");
else if (grade >= 60)

puts("D");
else

puts("F");

27

Nested if - Example

28

Compound Statement

Ø The if selection statement expects only one
statement in its body

Ø To include several statements in the body of an if,
the set of statements are included in braces

Ø if (grade >= 60)
puts("Passed. ");

// end if
else {

puts("Failed. ");
puts(”Take this course again. ");

} // end else

{
statement;
statement;

.

.

.
statement;

}

29

Precedence

Operator Precedence

() highest (evaluated first)

* / %

+ -

< <= >= >

== !=

&&

||

= lowest (evaluated last)

30

Condition Statements

(z+x < 1) || (y+z >= x-z)

3 4 2
x y z

+ -+
6 1

>=

5

<

||
10

1

31

Common usage in program

Ø Check range of x

x >= min && x <= max

x < z || x > y

32

English to C Logical Expression

180 Chapter 4 • Selection Structures: If and Switch Statements

technique of stopping evaluation of a logical expression as soon as its value can be
determined is called short-circuit evaluation .

 We can use short-circuit evaluation to prevent potential run-time errors. The
condition
 (num % div == 0)

 tests whether div is a divisor of num. For example, if num is 6 and div is 2, the
remainder is 0 so the condition is true. If num is 6 and div is 4, the remainder is 2
so the condition is false.

 What if div is 0? In this case, the remainder calculation would cause a division by
zero run-time error. However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0))

 The remainder would not be calculated when div is 0 because div != 0 is false.

 Writing English Conditions in C
 To solve programming problems, you must convert conditions expressed in English
to C. Many algorithm steps require testing to see if a variable’s value is within a
specified range of values. For example, if min represents the lower bound of a range
of values and max represents the upper bound (min is less than max), the expression

 min <= x && x <= max

 tests whether x lies within the range min through max , inclusive. In Fig. 4.2 this
range is shaded. The expression is 1 (true) if x lies within this range and 0 (false) if
 x is outside the range.

 EXAMPLE 4.3 Table 4.7 shows some English conditions and the corresponding C expressions.
Each expression is evaluated assuming x is 3.0 , y is 4.0 , and z is 2.0 .

 short-circuit
evaluation stopping
evaluation of a logical
expression as soon
as its value can be
determined

min max x

 FIGURE 4.2

 Range of True
Values for
 min <= x &&
x <= max

 TABLE 4.7 English Conditions as C Expressions

 English Condition Logical Expression Evaluation

 x and y are greater than z x > z && y > z 1 && 1 is 1 (true)

 x is equal to 1.0 or 3.0 x == 1.0 || x == 3.0 0 || 1 is 1 (true)

 x is in the range z to y , inclusive z <= x && x <= y 1 && 1 is 1 (true)

 x is outside the range z to y !(z <= x && x <= y)
 z > x || x > y

 !(1 && 1) is 0 (false)
 0 || 0 is 0 (false)

33

English to C Logical Expression

180 Chapter 4 • Selection Structures: If and Switch Statements

technique of stopping evaluation of a logical expression as soon as its value can be
determined is called short-circuit evaluation .

 We can use short-circuit evaluation to prevent potential run-time errors. The
condition
 (num % div == 0)

 tests whether div is a divisor of num. For example, if num is 6 and div is 2, the
remainder is 0 so the condition is true. If num is 6 and div is 4, the remainder is 2
so the condition is false.

 What if div is 0? In this case, the remainder calculation would cause a division by
zero run-time error. However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0))

 The remainder would not be calculated when div is 0 because div != 0 is false.

 Writing English Conditions in C
 To solve programming problems, you must convert conditions expressed in English
to C. Many algorithm steps require testing to see if a variable’s value is within a
specified range of values. For example, if min represents the lower bound of a range
of values and max represents the upper bound (min is less than max), the expression

 min <= x && x <= max

 tests whether x lies within the range min through max , inclusive. In Fig. 4.2 this
range is shaded. The expression is 1 (true) if x lies within this range and 0 (false) if
 x is outside the range.

 EXAMPLE 4.3 Table 4.7 shows some English conditions and the corresponding C expressions.
Each expression is evaluated assuming x is 3.0 , y is 4.0 , and z is 2.0 .

 short-circuit
evaluation stopping
evaluation of a logical
expression as soon
as its value can be
determined

min max x

 FIGURE 4.2

 Range of True
Values for
 min <= x &&
x <= max

 TABLE 4.7 English Conditions as C Expressions

 English Condition Logical Expression Evaluation

 x and y are greater than z x > z && y > z 1 && 1 is 1 (true)

 x is equal to 1.0 or 3.0 x == 1.0 || x == 3.0 0 || 1 is 1 (true)

 x is in the range z to y , inclusive z <= x && x <= y 1 && 1 is 1 (true)

 x is outside the range z to y !(z <= x && x <= y)
 z > x || x > y

 !(1 && 1) is 0 (false)
 0 || 0 is 0 (false)

34

Switch Statement

Ø Used to select one of several alternatives
Ø useful when the selection is based on the value of
§ a single variable
§ or a simple expression

Ø values may be of type int or char
§ NOT double

35

switch Statement

switch (controlling expression) {
label set1

statements1
break;

label set2
statements2
break;
.
.
.

label setn
statementsn
break;

36

switch Statement Example

37

Iteration Statement

Ø Repeat a set of actions while some condition remains
TRUE

Ø Example:
§ While there are more students in class raising their hand

Answer a question and let him/her lower the hand
§ While there are more items on my shopping list

Purchase next item and cross it off my list

Ø Usually, action statements modify variables that affect
the condition

Ø CAUTION: Check when the condition becomes FALSE
Ø Can be single statement or multiple (block)

Condition
Action

38

While Statement in C
while (condition)
{
…
}

39

While Statement in C
while (condition)
{
…
}

Ø Previously used Equation: ax3+7
Ø Code to compute x3

times=1; product =1;
while (times <= 3) {

product = x * product;
times = times+1;

} // end while

40

Counter controlled iteration

Ø Uses a variable called a counter to specify the number of
times a set of statements should execute.

Ø Counter-controlled iteration is often called definite
iteration because the number of iterations is known
before the loop begins executing.

41

Counter controlled iteration - pseudocode

42

Counter controlled iteration – C code

43

Counter controlled iteration – C code continued

44

Initialization phase

Ø A total is a variable used to accumulate the sum of a
series of values.

Ø A counter is a variable used to count—in this case, to
count the number of grades entered.

Ø An uninitialized variable contains a “garbage” value—the
value last stored in the memory location reserved for that
variable.

45

Formulating algorithm – Sentinel Controlled Iteration

Ø Consider the following problem:
§ Develop a class-average program that will process an arbitrary number

of grades each time the program is run.

Ø In this example, the program must process an arbitrary
number of grades.

46

Sentinel Controlled Iteration

Ø Use a special value called a sentinel value (also called a
signal value, a dummy value, or a flag value) to indicate
“end of data entry.”

Ø Sentinel-controlled iteration is often called indefinite
iteration because the number of iterations isn’t known
before the loop begins executing.

Ø Sentinel value must be chosen so that it cannot be
confused with an acceptable input value.

47

Sentinel controlled iteration - pseudocode

48

Sentinel controlled iteration – C code

49

Sentinel controlled iteration – C code

This would cause an infinite
loop if -1 is not input as the
first grade.

50

Sentinel controlled iteration - Output

51

Nested Control Statement

Ø One control statement within another
Ø Consider the following problem statement:
§ In a class of 10 students, get the result of the student from the user

(1=pass, 2=fail) and find the number of students who failed and who
passed. If more than 8 students passed, print a statement for bonus to
the instructor.

52

Nested Control Statement – Pseudocode

53

Nested Control Statement – C code

54

Nested Control Statement – C code

55

Nested Control Statement – Output 1

56

Nested Control Statement – Output 2

