Programming for Engineers

Number System

ICEN 200 - Spring 2018

Prof. Dola Saha

Types of Numbers

> Natural Numbers

- The number 0 and any number obtained by repeatedly adding a count of 1 to 0
> Negative Numbers
- A value less than 0
> Integer
- A natural number, the negative of a natural number, and 0 .
- So an integer number system is a system for 'counting' things in a simple systematic way

Exponent Review

> An exponent (power) tells you how many times to multiply the base by itself:

- $2^{1}=2$
- $2^{2}=2 \times 2=4$
- $2^{3}=2 \times 2 \times 2=8$
$>\quad 2^{0}=1 \quad($ ANY number raised to power 0 is 1$)$
$>1 / x^{2}=x^{-2}$

Decimal Number System

> How is a positive integer represented in decimal?
> Let's analyze the decimal number 375:

$$
\begin{aligned}
375 & =(3 \times 100)+(7 \times 10)+(5 \times 1) \\
& =\left(3 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(5 \times 10^{0}\right)
\end{aligned}
$$

> In a computer, information is stored using digital signals that translate to binary numbers
\rightarrow A single binary digit (0 or 1) is called a bit

- A single bit can represent two possible states, on (1) or off (0)
> Combinations of bits are used to store values

Data Representation

> Data representation means encoding data into bits

- Typically, multiple bits are used to represent the 'code' of each value being represented
> Values being represented may be characters, numbers, images, audio signals, and video signals.
> Although a different scheme is used to encode each type of data, in the end the code is always a string of zeros and ones

Decimal to Binary

> So in a computer, the only possible digits we can use to encode data are \{0,1\}

- The numbering system that uses this set of digits is the base 2 system (also called the Binary Numbering System)
> We can apply all the principles of the base 10 system to the base 2 system

Binary Numbering System

> How is a positive integer represented in binary?
> Let's analyze the binary number 110 :

$$
\begin{aligned}
110 & =\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right) \\
& =(1 \times 4)+(1 \times 2)+(0 \times 1)
\end{aligned}
$$

$$
\mathbf{2 0}^{\mathbf{0}} .
$$

> So a count of SIX is represented in binary as 110

Binary to Decimal Conversion

Example: Convert binary 100101 to decimal (written 100101_{2}) =

Binary to Decimal Conversion

Example \#2: $\mathbf{1 0 1 1 1}_{2}$

 binary number:

Binary to Decimal Conversion

Example \#3: $\quad 110010_{2}$

Decimal to Binary Conversion

Using the Division Method:

Divide decimal number by 2 until you reach zero, and then collect the remainders in reverse.

$$
\text { Example 1: } \quad 22_{10} \quad=10110_{2}
$$

2) 22 Rem:
$2) \lcm{11}$
$2 \lcm{5}$
$2)$
$2 \lcm{2}$
$2 \lcm{2}$
2
1

Decimal to Binary Conversion

Using the Division Method Example 2:
 $$
56_{10}=111000_{2}
$$

Octal Number

> Base: 8
> Digits: 0, 1, 2, 3, 4, 5, 6, 7
Octal number: $\quad 357_{8}$

$$
=\left(3 \times 8^{2}\right)+\left(5 \times 8^{1}\right)+\left(7 \times 8^{0}\right)
$$

> To convert to base 10, beginning with the rightmost digit, multiply each nth digit by $8^{(n-1)}$, and add all of the results together.

Octal to Decimal Conversion

Example 1: 357_{8}

positional powers of 8: $\begin{array}{llll}8^{2} & 8^{1} & 8^{0}\end{array}$ decimal positional value: $\begin{array}{llll}64 & 8 & 1\end{array}$ Octal number: $3 \quad 57$

$$
\begin{aligned}
& (3 \times 64)+(5 \times 8)+(7 \times 1) \\
= & 192+40+7=239_{10}
\end{aligned}
$$

Decimal to Octal Conversion

Using the Division Method:

Example 1:
 $214_{10}=326_{8}$

$$
\begin{array}{rc}
8 \lcm{214} \\
8 \lcm{26} & \text { Rem: } \\
8 \lcm{3} & 2 \\
8 \lcm{3} & 3
\end{array}
$$

Hexadecimal Number

> Base: 16
$>$ Digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
$>$ Hexadecimal number: 1F4 $_{16}$

$$
=\left(1 \times 16^{2}\right)+\left(F \times 16^{1}\right)+\left(4 \times 16^{0}\right)
$$

Hex Values

Hex to Decimal Conversion

> Example 1:

1F4 ${ }_{16}$

positional powers of 16: $\begin{array}{lllll}16^{3} & 16^{2} & 16^{1} & 16^{0}\end{array}$ decimal positional value: 4096256161

Hexadecimal number:

$$
\begin{aligned}
& (1 \times 256)+(F \times 16)+(4 \times 1) \\
& =(1 \times 256)+(15 \times 16)+(4 \times 1) \\
& =256+240+4=500_{10}
\end{aligned}
$$

Decimal to Hex Conversion

Using The Division Method:

Example 1:
$126_{10}=7 E_{16}$

