Programming for Engineers

Number System

State University of New York

ICEN 200 – Spring 2018 Prof. Dola Saha

Types of Numbers

Natural Numbers

 The number 0 and any number obtained by repeatedly adding a count of 1 to 0

> Negative Numbers

- A value less than 0
- > Integer
 - A natural number, the negative of a natural number, and 0.
 - So an integer number system is a system for 'counting' things in a simple systematic way

Exponent Review

- An exponent (power) tells you how many times to multiply the base by itself:
 - 2¹ = 2
 - 2² = 2 x 2 = 4
 - $2^3 = 2 \times 2 \times 2 = 8$
- $> 2^0 = 1$ (ANY number raised to power 0 is 1)

> $1/x^2 = x^{-2}$

Decimal Number System

State University of New York

- How is a **positive integer** represented in decimal?
- > Let's analyze the decimal number **375**:

$$= (3 \times 100) + (7 \times 10) + (5 \times 1)$$

$$= (\mathbf{3} \times 10^2) + (\mathbf{7} \times 10^1) + (\mathbf{5} \times 10^0)$$

Bits

- In a computer, information is stored using digital signals that translate to binary numbers
- > A single binary digit (0 or 1) is called a bit
 - A single bit can represent two possible states, on (1) or off (0)
- Combinations of bits are used to store values

Data Representation

- > Data representation means encoding **data** into **bits**
 - Typically, multiple bits are used to represent the 'code' of each value being represented
- Values being represented may be characters, numbers, images, audio signals, and video signals.
- Although a different scheme is used to encode each type of data, in the end the code is always a string of **zeros** and **ones**

Decimal to Binary

- So in a computer, the only possible digits we can use to encode data are {0,1}
 - The numbering system that uses this set of digits is the base 2 system (also called the Binary Numbering System)
- We can apply all the principles of the base 10 system to the base 2 system

Position weights
$$2^4$$
 2^3 2^2 2^1 2^0 digits \longrightarrow 1011

Binary Numbering System

- How is a **positive integer** represented in **binary**?
- > Let's analyze the binary number **110**:

110 = $(\mathbf{1} \times 2^2) + (\mathbf{1} \times 2^1) + (\mathbf{0} \times 2^0)$ = $(\mathbf{1} \times 4) + (\mathbf{1} \times 2) + (\mathbf{0} \times 1)$

> So a count of **SIX** is represented in binary as **110**

Example: Convert binary 100101 to decimal (written $1 \ 0 \ 0 \ 1 \ 0 \ 1_2$) = $\longrightarrow 1^* 2^0 + \longrightarrow 1 + 0^* 2^1 +$ $\longrightarrow 1^{*}2^{2} + \longrightarrow 4 +$ $0^{*}2^{3}$ + 0*24 + $1^{*}2^{5} \longrightarrow 32$ 37_{10}

Example #2: 10111₂

positional powers of 2: decimal positional value:

binary number:

Binary to Decimal Conversion

Example #3: 110010₂

Using the **Division** Method:

State University of New York

Divide decimal number by 2 until you reach zero, and then collect the **remainders** in reverse.

Example 1: $22_{10} = 10110_{2}$ 2)22 Rem: 2)11 0 2)5 1 2)5 1 2)2 1 2)2 1 2)1 00 1

Decimal to Binary Conversion

Using the **Division** Method <u>Example 2:</u> $56_{10} = 111000_2$

Octal Number

- ➢ Base: 8
- Digits: 0, 1, 2, 3, 4, 5, 6, 7
- Octal number: 357₈

= $(3 \times 8^2) + (5 \times 8^1) + (7 \times 8^0)$

To convert to base 10, beginning with the rightmost digit, multiply each nth digit by 8⁽ⁿ⁻¹⁾, and add all of the results together.

Octal to Decimal Conversion

Example 1: 357₈

positional powers of 8: 8^2 8^1 8^0 decimal positional value:6481Octal number:357

$$(3 \times 64) + (5 \times 8) + (7 \times 1)$$

$$=$$
 192 + 40 + 7 = 239₁₀

Decimal to Octal Conversion

Using the **Division** Method:

Hexadecimal Number

- ➢ Base: 16
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- ➢ Hexadecimal number: 1F4₁₆

$$= (1 \times 16^2) + (F \times 16^1) + (4 \times 16^0)$$

Decimal ValueHexadecimal Digit10A11B12C13D14E15F

Hex to Decimal Conversion

> Example 1: $1F4_{16}$

positional powers of 16: 16^3 16^2 16^1 16^0 decimal positional value: 4096 256 16 1

Hexadecimal number: 1 F 4

$$(1 \times 256) + (F \times 16) + (4 \times 1)$$

= $(1 \times 256) + (15 \times 16) + (4 \times 1)$

 $= 256 + 240 + 4 = 500_{10}$

Using The **Division** Method:

Example 1: $126_{10} = 7E_{16}$ 16) 126 Rem: 14=E 0 7

