
1

Programming for
Engineers

Data Types
ICEN 200 – Spring 2018
Prof. Dola Saha

2

Data Types
Data Type Description Bytes in Memory
char Character 1

int Whole number 4 or 2 (natural size of integer in
host machine)

float Real number - Single precision floating point Usually 4

double Real number - Double precision floating point Usually 8

short Shorter than regular Usually 2

long Longer than regular Usually 8

unsigned No bits used for sign

signed 1 bit used for sign

3

Numeric Data Types

4

Data type: char

Ø 1 Byte or 8 bits
Ø Example: A, c, x, q
Ø Character is represented in memory as a binary number
Ø Value stored is determined by ASCII (American Standard

Code for Information Interchange) code.
Ø Print format: %c
Ø If printed with %d
§ Prints the value in ASCII

5

Character and ASCII

6

Data type: int

Ø Standard Integer
Ø Limited by size of memory
Ø Usually 4 bytes
Ø Value stored in binary
Ø 1 bit for sign (0 for positive, 1 for negative)
Ø Range: -2147483648, 2147483647
Ø Print format: %d
Ø Use unsigned to use all the bits

7

Integer will not suffice – real applications

Ø Calculate area of a circle
Ø Calculate average of grades

in class

42.686908, -73.823919

8

Float, Double

Ø Real number, analogous to scientific notation
Ø Storage area divided into three areas:
§ Sign (0 for positive, 1 for negative)
§ Exponent (repeated multiplication)
§ Mantissa (binary fraction between 0.5 and 1)

Ø The mantissa and exponent are chosen such that the
following formula is correct

56 Chapter 2 • Overview of C

 Differences Between Numeric Types
 You may wonder why having more than one numeric type is necessary. Can the
data type double be used for all numbers? Yes, but on many computers, operations
involving integers are faster than those involving numbers of type double . Less
storage space is needed to store type int values. Also, operations with integers are
always precise, whereas some loss of accuracy or round-off error may occur when
dealing with type double numbers.

 These differences result from the way numbers are represented in the compu-
ter’s memory. All data are represented in memory as binary strings, strings of 0s and
1s. However, the binary string stored for the type int value 13 is not the same as
the binary string stored for the type double number 13.0. The actual internal rep-
resentation is computer dependent, and type double numbers usually require more
bytes of computer memory than type int. Compare the sample int and double
formats shown in Fig. 2.2 .

 Positive integers are represented by standard binary numbers. If you are famil-
iar with the binary number system, you know that the integer 13 is represented as
the binary number 01101.

 The format of type double values (also called floating-point format) is analo-
gous to scientific notation. The storage area occupied by the number is divided into
three sections: the sign (0 for positive numbers, 1 for negative numbers), the man-
tissa , and the exponent. The mantissa is a binary fraction between 0.5 and 1.0. The
exponent is an integer. The mantissa and exponent are chosen so that the following
formula is correct.

 real number ! mantissa " 2exponent

 If 64 bits are used for storage of a type double number, the sign would occupy 1
bit, the exponent 11 bits, and the mantissa 52 bits. Because of the finite size of a
memory cell, not all real numbers in the range allowed can be represented precisely
as type double values. We will discuss this concept later.

 We have seen that type double values may include a fractional part, whereas
type int values cannot. An additional advantage of the type double format is that
a much larger range of numbers can be represented as compared to type int .
Actual ranges vary from one implementation to another, but the ANSI standard
for C specifies that the minimum range of positive values of type int is from 1 to
32,767 (approximately 3.3 " 10 4). The minimum range specified for positive values

 FIGURE 2.2

 Internal Formats of
Type int and Type
double

binary number

type int format

sign exponent mantissa

type double format

56 Chapter 2 • Overview of C

 Differences Between Numeric Types
 You may wonder why having more than one numeric type is necessary. Can the
data type double be used for all numbers? Yes, but on many computers, operations
involving integers are faster than those involving numbers of type double . Less
storage space is needed to store type int values. Also, operations with integers are
always precise, whereas some loss of accuracy or round-off error may occur when
dealing with type double numbers.

 These differences result from the way numbers are represented in the compu-
ter’s memory. All data are represented in memory as binary strings, strings of 0s and
1s. However, the binary string stored for the type int value 13 is not the same as
the binary string stored for the type double number 13.0. The actual internal rep-
resentation is computer dependent, and type double numbers usually require more
bytes of computer memory than type int. Compare the sample int and double
formats shown in Fig. 2.2 .

 Positive integers are represented by standard binary numbers. If you are famil-
iar with the binary number system, you know that the integer 13 is represented as
the binary number 01101.

 The format of type double values (also called floating-point format) is analo-
gous to scientific notation. The storage area occupied by the number is divided into
three sections: the sign (0 for positive numbers, 1 for negative numbers), the man-
tissa , and the exponent. The mantissa is a binary fraction between 0.5 and 1.0. The
exponent is an integer. The mantissa and exponent are chosen so that the following
formula is correct.

 real number ! mantissa " 2exponent

 If 64 bits are used for storage of a type double number, the sign would occupy 1
bit, the exponent 11 bits, and the mantissa 52 bits. Because of the finite size of a
memory cell, not all real numbers in the range allowed can be represented precisely
as type double values. We will discuss this concept later.

 We have seen that type double values may include a fractional part, whereas
type int values cannot. An additional advantage of the type double format is that
a much larger range of numbers can be represented as compared to type int .
Actual ranges vary from one implementation to another, but the ANSI standard
for C specifies that the minimum range of positive values of type int is from 1 to
32,767 (approximately 3.3 " 10 4). The minimum range specified for positive values

 FIGURE 2.2

 Internal Formats of
Type int and Type
double

binary number

type int format

sign exponent mantissa

type double format

9

Float, Double

Ø Float (single precision)
§ 1 bit sign, 8 bits exponent, 23 bits mantissa

Ø Double (double precision)
§ 1 bit sign, 11 bits exponent, 52 bits mantissa

Ø Depends on hardware
Ø Print format: %f (for float) %lf (for double)

10

Short, Long, Long Double

Ø Short
§ Usually 2 bytes whole number
§ Print format: %d

Ø Long
§ Usually 8 bytes whole number
§ Print format: %ld

Ø Long Double
§ Usually 16 bytes fractional
§ Print format: %Lf

11

Size and limits

12

Output of size

13

Ranges 2.2 • Variable Declarations and Data Types 57

of type double is from 10 !37 to 10 37 . To understand how small 10 !37 is, consider the
fact that the mass of one electron is approximately 10 !27 grams, and 10 !37 is one
ten-billionth of 10 !27 . The enormity of 10 37 may be clearer when you realize that if
you multiply the diameter of the Milky Way galaxy in kilometers by a trillion, your
numeric result is just one ten-thousandth of 10 37 .

 ANSI C provides several integer data types in addition to int. Table 2.5 lists these
types along with their ranges in a typical microprocessor-based C implementation
(short <= int <= long). Notice that the largest number represented by an unsigned
integer type is about twice the magnitude of the largest value in the corresponding
 signed type. This results from using the sign bit as part of the number’s magnitude.

 Similarly, ANSI C defines three floating-point types that differ in their memory
requirements: float , double , and long double . Values of type float must have at
least six decimal digits of precision; both type double and long double values must
have at least ten decimal digits. Table 2.6 lists the range of positive numbers repre-
sentable by each of these types in a typical C microprocessor-based implementation.

 Data Type char
 Data type char represents an individual character value—a letter, a digit, or a
special symbol. Each type char value is enclosed in apostrophes (single quotes) as
shown here.

 'A' 'z' '2' '9' '*' ':' '"' ' '

 TABLE 2.5 Integer Types in C

 Type Range in Typical Microprocessor Implementation

 short −32,767 .. 32,767

 unsigned short 0 .. 65,535

 int −2,147,483,647 .. 2,147,483,647

 unsigned 0 .. 4,294,967,295

 long −2,147,483,647 .. 2,147,483,647

 unsigned long 0 .. 4,294,967,295

 TABLE 2.6 Floating-Point Types in C

 Type Approximate Range* Significant Digits*

 float 10 −37 .. 10 38 6

 double 10 −307 .. 10 308 15

 long double 10 −4931 .. 10 4932 19

 *In a typical microprocessor-based C implementation

2.2 • Variable Declarations and Data Types 57

of type double is from 10 !37 to 10 37 . To understand how small 10 !37 is, consider the
fact that the mass of one electron is approximately 10 !27 grams, and 10 !37 is one
ten-billionth of 10 !27 . The enormity of 10 37 may be clearer when you realize that if
you multiply the diameter of the Milky Way galaxy in kilometers by a trillion, your
numeric result is just one ten-thousandth of 10 37 .

 ANSI C provides several integer data types in addition to int. Table 2.5 lists these
types along with their ranges in a typical microprocessor-based C implementation
(short <= int <= long). Notice that the largest number represented by an unsigned
integer type is about twice the magnitude of the largest value in the corresponding
 signed type. This results from using the sign bit as part of the number’s magnitude.

 Similarly, ANSI C defines three floating-point types that differ in their memory
requirements: float , double , and long double . Values of type float must have at
least six decimal digits of precision; both type double and long double values must
have at least ten decimal digits. Table 2.6 lists the range of positive numbers repre-
sentable by each of these types in a typical C microprocessor-based implementation.

 Data Type char
 Data type char represents an individual character value—a letter, a digit, or a
special symbol. Each type char value is enclosed in apostrophes (single quotes) as
shown here.

 'A' 'z' '2' '9' '*' ':' '"' ' '

 TABLE 2.5 Integer Types in C

 Type Range in Typical Microprocessor Implementation

 short −32,767 .. 32,767

 unsigned short 0 .. 65,535

 int −2,147,483,647 .. 2,147,483,647

 unsigned 0 .. 4,294,967,295

 long −2,147,483,647 .. 2,147,483,647

 unsigned long 0 .. 4,294,967,295

 TABLE 2.6 Floating-Point Types in C

 Type Approximate Range* Significant Digits*

 float 10 −37 .. 10 38 6

 double 10 −307 .. 10 308 15

 long double 10 −4931 .. 10 4932 19

 *In a typical microprocessor-based C implementation

Whole Number

Real Number

14

Review Questions

Ø State True or False:
§ Short takes more memory space than Integer (int)
§ Float and double are real number representations in C
§ Char is represented in memory by ASCII
§ Print format for char is %d
§ Print format for double is %lf
§ Float and double has 2 parts: exponent and mantissa

15

Review Questions / Answers

Ø State True or False:
§ Short takes more memory space than Integer (int) FALSE
§ Float and double are real number representations in C TRUE
§ Char is represented in memory by ASCII TRUE
§ Print format for char is %d FALSE
§ Print format for double is %lf TRUE
§ Float and double has 2 parts: exponent and mantissa FALSE

16

What is the error in code?

17

What is the error in code?

Compilation Error

Correct Code

18

What is the error in code?

19

What is the error in code?

Compilation Error

Correct Code

20

What is the error in code?

Ø Ddad

21

What is the error in code?

Ø Ddad

Compilation Error

Correct Code

22

Common Errors
Ø Omitting the parentheses after main.
Ø Omitting or incorrectly typing the opening brace { that signifies the start of a

function body.
Ø Omitting or incorrectly typing the closing brace } that signifies the end of a

function.
Ø Misspelling the name of a function; for example, typing pintf () instead of

printf ().
Ø Forgetting to close the message to printf () with a double quote symbol.
Ø Omitting the semicolon at the end of each C statement.
Ø Adding a semicolon at the end of the #include preprocessor command.
Ø Forgetting the \n to indicate a new line.
Ø Incorrectly typing the letter 0 for the number zero (0), or vice versa.
Ø Incorrectly typing the letter I for the number 1, or vice versa.

23

C Keywords

Ø Reserved words of the language, special meaning to C
compiler

Ø Do not use these as identifiers, like variable names

