
1

Programming for
Engineers

Introduction to C
ICEN 200– Spring 2018
Prof. Dola Saha

2

Simple Program

3

Comments

Ø // Fig. 2.1: fig02_01.c
// A first program in C

§ begin with //, indicating that these two lines are comments.
§ Comments document programs and improve program readability.
§ Comments do not cause the computer to perform any action when the

program is run.
§ You can also use /*…*/ multi-line comments in which everything

from /* on the first line to */ at the end of the line is a comment.
§ We prefer // comments because they’re shorter and they eliminate

the common programming errors that occur with /*…*/
comments, especially when the closing */ is omitted.

4

Preprocessor
#include Preprocessor Directive
Ø #include <stdio.h>
§ is a directive to the C preprocessor.

Ø Lines beginning with # are processed by the preprocessor
before compilation.

Ø Line 3 tells the preprocessor to include the contents of the
standard input/output header (<stdio.h>) in the program.

Ø This header contains information used by the compiler when
compiling calls to standard input/output library functions
such as printf.

5

Blank Lines, Spaces, Tabs
Ø You use blank lines, space characters and tab

characters (i.e., “tabs”) to make programs easier to
read.

Ø Together, these characters are known as white space.
White-space characters are normally ignored by the
compiler.

6

Main Function
The main Function
Ø int main(void)
§ is a part of every C program.
§ The parentheses after main indicate that main is a program building block

called a function.

Ø C programs contain one or more functions, one of which
must be main.

Ø Every program in C begins executing at the function
main.

Ø The keyword int to the left of main indicates that
main “returns” an integer (whole number) value.

7

Main Function

Ø We’ll explain what it means for a function to “return a
value” when we learn about Functions.

Ø For now, simply include the keyword int to the left of
main in each of your programs.

Ø Functions also can receive information when they’re
called upon to execute.

Ø The void in parentheses here means that main does
not receive any information.

8

Body of Function

Ø A left brace, {, begins the body of every function
Ø A corresponding right brace, }, ends each function
Ø This pair of braces and the portion of the program

between the braces is called a block.

9

Output Statement
An Output Statement
Ø printf("Welcome to C!\n");
§ instructs the computer to perform an action, namely to print on the screen the

string of characters marked by the quotation marks.
§ A string is sometimes called a character string, a message or a literal.
§ The entire line, including the printf function (the “f” stands for “formatted”),

its argument within the parentheses and the semicolon (;), is called a
statement.

§ Every statement must end with a semicolon (also known as the statement
terminator).

§ When the preceding printf statement is executed, it prints the message
Welcome to C! on the screen.

§ The characters normally print exactly as they appear between the double quotes
in the printf statement.

10

Output Statement
Escape Sequences
§ Notice that the characters \n were not printed on the screen.
§ The backslash (\) is called an escape character.
§ It indicates that printf is supposed to do something out of the

ordinary.
§ When encountering a backslash in a string, the compiler looks ahead at

the next character and combines it with the backslash to form an
escape sequence.

§ The escape sequence \n means newline.
§ When a newline appears in the string output by a printf, the

newline causes the cursor to position to the beginning of the next line
on the screen.

11

Output Statement
§ Because the backslash has special meaning in a string, i.e., the

compiler recognizes it as an escape character, we use a double
backslash (\\) to place a single backslash in a string.

§ Printing a double quote also presents a problem because double
quotes mark the boundaries of a string—such quotes are not
printed.

§ By using the escape sequence \" in a string to be output by
printf, we indicate that printf should display a double
quote.

12

Common Escape Sequences

13

Multiple Printfs

14

Multiple Printfs

15

Scanf

16

Formatted Input
The scanf Function and Formatted Inputs
Ø The next statement

o scanf("%d", &integer1); // read an integer
uses scanf to obtain a value from the user.

Ø The scanf function reads from the standard input
Ø This scanf has two arguments, "%d" and &integer1.
Ø The first, the format control string, indicates the type of data that should

be input by the user.
Ø The %d conversion specifier indicates that the data should be an integer

(the letter d stands for “decimal integer”).
Ø The % in this context is treated by scanf (and printf as we’ll see) as a

special character that begins a conversion specifier.
Ø The second argument of scanf begins with an ampersand (&)—called

the address operator in C—followed by the variable name.

17

Scanf

Ø The &, when combined with the variable name, tells scanf
the location (or address) in memory at which the variable
integer1 is stored.

Ø The computer then stores the value that the user enters
for integer1 at that location.

Ø The use of ampersand (&) is often confusing to novice
programmers or to people who have programmed in
other languages that do not require this notation.

Ø For now, just remember to precede each variable in every
call to scanfwith an ampersand.

18

Printing with a Format Control String
Ø printf("Sum is %d\n", sum); // print sum
§ calls function printf to print the literal Sum is followed by the

numerical value of variable sum on the screen.
§ This printf has two arguments, "Sum is %d\n" and sum.
§ The first argument is the format control string.
§ It contains some literal characters to be displayed, and it contains the

conversion specifier %d indicating that an integer will be printed.
§ The second argument specifies the value to be printed.
§ Notice that the conversion specifier for an integer is the same in both

printf and scanf.
Ø Calculations in printf statement
§ We could have combined the previous two statements into the

statement
o printf("Sum is %d\n", integer1 + integer2);

19

Find error & correct it

 Exercises 65

if statement is true. The semicolon after the right parenthesis is considered an empty
statement—a statement that does nothing.]

d) Error: => is not an operator in C.
Correction: The relational operator => should be changed to >= (greater than or equal to).

Exercises
2.7 Identify and correct the errors in each of the following statements. (Note: There may be
more than one error per statement.)

a) scanf("d", value);
b) printf("The product of %d and %d is %d"\n, x, y);
c) firstNumber + secondNumber = sumOfNumbers
d) if (number => largest)

 largest == number;
e) */ Program to determine the largest of three integers /*
f) Scanf("%d", anInteger);
g) printf("Remainder of %d divided by %d is\n", x, y, x % y);
h) if (x = y);

 printf(%d is equal to %d\n", x, y);
i) print("The sum is %d\n," x + y);
j) Printf("The value you entered is: %d\n, &value);

2.8 Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.
b) The function used to display information on the screen is .
c) A C statement that makes a decision is .
d) Calculations are normally performed by statements.
e) The function inputs values from the keyboard.

2.9 Write a single C statement or line that accomplishes each of the following:
a) Print the message “Enter two numbers.”
b) Assign the product of variables b and c to variable a.
c) State that a program performs a sample payroll calculation (i.e., use text that helps to

document a program).
d) Input three integer values from the keyboard and place them in integer variables a, b

and c.
2.10 State which of the following are true and which are false. If false, explain your answer.

a) C operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,

his_account_total, a, b, c, z, z2.
c) The statement printf("a = 5;"); is a typical example of an assignment statement.
d) A valid arithmetic expression containing no parentheses is evaluated from left to right.
e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

2.11 Fill in the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multiplication?

.
b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic

expression? .
c) A location in the computer’s memory that may contain different values at various times

throughout the execution of a program is called a .

2.12 What, if anything, prints when each of the following statements is performed? If nothing
prints, then answer “Nothing.” Assume x = 2 and y = 3.

 Exercises 65

if statement is true. The semicolon after the right parenthesis is considered an empty
statement—a statement that does nothing.]

d) Error: => is not an operator in C.
Correction: The relational operator => should be changed to >= (greater than or equal to).

Exercises
2.7 Identify and correct the errors in each of the following statements. (Note: There may be
more than one error per statement.)

a) scanf("d", value);
b) printf("The product of %d and %d is %d"\n, x, y);
c) firstNumber + secondNumber = sumOfNumbers
d) if (number => largest)

 largest == number;
e) */ Program to determine the largest of three integers /*
f) Scanf("%d", anInteger);
g) printf("Remainder of %d divided by %d is\n", x, y, x % y);
h) if (x = y);

 printf(%d is equal to %d\n", x, y);
i) print("The sum is %d\n," x + y);
j) Printf("The value you entered is: %d\n, &value);

2.8 Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.
b) The function used to display information on the screen is .
c) A C statement that makes a decision is .
d) Calculations are normally performed by statements.
e) The function inputs values from the keyboard.

2.9 Write a single C statement or line that accomplishes each of the following:
a) Print the message “Enter two numbers.”
b) Assign the product of variables b and c to variable a.
c) State that a program performs a sample payroll calculation (i.e., use text that helps to

document a program).
d) Input three integer values from the keyboard and place them in integer variables a, b

and c.
2.10 State which of the following are true and which are false. If false, explain your answer.

a) C operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,

his_account_total, a, b, c, z, z2.
c) The statement printf("a = 5;"); is a typical example of an assignment statement.
d) A valid arithmetic expression containing no parentheses is evaluated from left to right.
e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

2.11 Fill in the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multiplication?

.
b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic

expression? .
c) A location in the computer’s memory that may contain different values at various times

throughout the execution of a program is called a .

2.12 What, if anything, prints when each of the following statements is performed? If nothing
prints, then answer “Nothing.” Assume x = 2 and y = 3.

20

Variables
Variables and Variable Definitions

Ø int integer1; // first number to be entered by user
int integer2; // second number to be entered by user
int sum; // variable in which sum will be stored

are definitions.

Ø The names integer1, integer2 and sum are the names of
variables—locations in memory where values can be stored for use by a
program.

Ø These definitions specify that the variables integer1, integer2
and sum are of type int, which means that they’ll hold integer values,
i.e., whole numbers such as 7, –11, 0, 31914 and the like.

21

Variables
Ø All variables must be defined with a name and a data type

before they can be used in a program.

Ø The preceding definitions could have been combined into a
single definition statement as follows:
o int integer1, integer2, sum;

but that would have made it difficult to describe the variables
with corresponding comments

22

Identifiers
Identifiers and Case Sensitivity
Ø A variable name in C is any valid identifier.

Ø An identifier is a series of characters consisting of letters,
digits and underscores (_) that does not begin with a digit.

Ø C is case sensitive—uppercase and lowercase letters are
different in C, so a1 and A1 are different identifiers.

23

Common Errors & Practices

24

Assignment Statement
Ø The assignment statement

o sum = integer1 + integer2; // assign total to sum
calculates the total of variables integer1 and integer2 and assigns
the result to variable sum using the assignment operator =.

Ø The statement is read as, “sum gets the value of integer1 +
integer2.” Most calculations are performed in assignments.

Ø The = operator and the + operator are called binary operators because
each has two operands.

Ø The + operator’s two operands are integer1 and integer2.

Ø The = operator’s two operands are sum and the value of the expression
integer1 + integer2.

25

Memory Concepts
Ø Variable names such as integer1, integer2 and sum actually

correspond to locations in the computer’s memory.

Ø Every variable has a name, a type and a value.

Ø In the addition program, when the statement
o scanf("%d", &integer1); // read an integer

Ø is executed, the value entered by the user is placed into a memory
location to which the name integer1 has been assigned.

Ø Suppose the user enters the number 45 as the value for
integer1.

Ø The computer will place 45 into location integer1.

26

Memory Concepts
Ø Whenever a value is placed in a memory location, the value replaces

the previous value in that location; thus, this process is said to be
destructive.

Ø When the statement
o scanf("%d", &integer2); // read an integer

executes, suppose the user enters the value 72.
Ø This value is placed into location integer2, in the memory

appears.
Ø These locations are not necessarily adjacent in memory.

27

Memory Concepts

Ø Once the program has obtained values for integer1 and
integer2, it adds these values and places the total into
variable sum.

Ø sum = integer1 + integer2; // assign total to sum

§ replaces whatever value was stored in sum.

Ø This occurs when the calculated total of integer1 and
integer2 is placed into location sum (destroying the value
already in sum).

28

Memory Concepts

Ø They were used, but not destroyed, as the computer
performed the calculation.

Ø Thus, when a value is read from a memory location, the
process is said to be nondestructive.

29

Arithmentic in C

Ø The arithmetic operators are all binary operators.

30

Integer Division and Remainder
Ø Integer division yields an integer result
Ø For example, the expression 7 / 4 evaluates to 1 and the

expression 17 / 5 evaluates to 3
Ø C provides the remainder operator, %, which yields the

remainder after integer division
Ø Can be used only with integer operands
Ø The expression x % y yields the remainder after x is divided

by y
Ø Thus, 7 % 4 yields 3 and 17 % 5 yields 2

31

Parentheses

Ø Parentheses are used in C expressions in the same
manner as in algebraic expressions.

Ø For example, to multiply a times the quantity b + c we
write a * (b + c).

32

Rules of Operator Precedence
Ø C applies rules of operator precedence, which are

generally the same as those in algebra:
§ Operators in expressions contained within pairs of parentheses are

evaluated first. Parentheses are said to be at the “highest level of
precedence.” In cases of nested, or embedded, parentheses, such as

o ((a + b) + c)
the operators in the innermost pair of parentheses are applied first.

§ Multiplication, division and remainder operations are applied next.
§ Evaluation proceeds from left to right.
§ Addition and subtraction operations are evaluated next.
§ The assignment operator (=) is evaluated last.

33

Order of precedence

34

Example order of precedence

