
1

Cyber-Physical Systems

Deadline based Scheduling
ICEN 553/453– Fall 2018
Prof. Dola Saha

2

Real-Time Systems
Ø The operating system, and in particular the scheduler, is perhaps the

most important component

Ø Correctness of the system depends not only on the logical result of the
computation but also on the time at which the results are produced

Ø Tasks attempt to react to events that take place in the outside world
Ø These events occur in “real time” and tasks must be able to keep up with

them

•Control of laboratory experiments
•Process control in industrial plants
•Robotics
•Air traffic control
•Telecommunications
•Military command and control systems

Examples:

3

Hard and Soft Real-Time Tasks
Ø Hard
§ One that must meet its deadline
§ Otherwise it will cause

unacceptable damage or a fatal
error to the system

Ø Soft
§ Has an associated deadline that

is desirable but not mandatory
§ It still makes sense to schedule

and complete the task even if it
has passed its deadline

4

Periodic and Aperiodic Tasks
Ø Periodic tasks
§ Requirement may be stated as:

o Once per period T
o Exactly T units apart

Ø Aperiodic tasks
§ Has a deadline by which it must finish or start
§ May have a constraint on both start and finish time

5

Characteristics of Real Time Systems

Real-time operating systems have requirements in five
general areas:

Determinism

Responsiveness

User control

Reliability

Fail-soft operation

6

Determinism
Ø Concerned with how long an operating system delays

before acknowledging an interrupt
Ø Operations are performed at fixed, predetermined times or

within predetermined time intervals
o When multiple processes are competing for resources and processor

time, no system will be fully deterministic

The extent to which an
operating system can

deterministically satisfy
requests depends on:

The speed with which it
can respond to interrupts

Whether the system has
sufficient capacity to

handle all requests within
the required time

7

Responsiveness
Ø Together with determinism make up the response time to

external events
o Critical for real-time systems that must meet timing requirements

imposed by individuals, devices, and data flows external to the system

Ø Concerned with how long, after acknowledgment, it takes
an operating system to service the interrupt

• Amount of time required to initially handle the interrupt and begin execution of the interrupt
service routine

• Amount of time required to perform the ISR
• Effect of interrupt nesting

Responsiveness includes:

8

User Control
Ø Generally much broader in a real-time operating system than

in ordinary operating systems
Ø It is essential to allow the user fine-grained control over task

priority
Ø User should be able to distinguish between hard and soft tasks

and to specify relative priorities within each class
Ø May allow user to specify such characteristics as:

Paging or process
swapping

What processes must
always be resident
in main memory

What disk transfer
algorithms are to

be used

What rights the
processes in various
priority bands have

9

Reliability
Ø More important for real-time systems than non-real time

systems
Ø Real-time systems respond to and control events in real

time so loss or degradation of performance may have
catastrophic consequences such as:
o Financial loss
o Major equipment damage
o Loss of life

10

Fail-Soft Operation
Ø A characteristic that refers to the ability of a system to fail

in such a way as to preserve as much capability and data
as possible

Ø Important aspect is stability
o A real-time system is stable if the system will meet the deadlines of its

most critical, highest-priority tasks even if some less critical task
deadlines are not always met

11

Features common to Most RTOSs
Ø A stricter use of priorities than in an ordinary OS, with

preemptive scheduling that is designed to meet real-time
requirements

Ø Interrupt latency is bounded and relatively short
Ø More precise and predictable timing characteristics than

general purpose OSs

12

Rate Monotonic Scheduling
Ø Simple process model: n tasks invoked periodically with:
§ periods T1, … ,Tn, which equal the deadlines
§ known worst-case execution times (WCET) C1, … ,Cn
o no mutexes, semaphores, or blocking I/O
§ independent tasks, no precedence constraints
§ fixed priorities
§ preemptive scheduling

Ø Rate Montonic Scheduling (RMS): priorities ordered by
period (smallest period has the highest priority)

13

Feasibility for RMS
Ø Feasibility is defined for RMS to mean that every task

executes to completion once within its designated period.

Ø Theorem: Under the simple process model, if any priority
assignment yields a feasible schedule, then RMS also
yields a feasible schedule.

Ø RMS is optimal in the sense of feasibility.
Liu and Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environment,” J. ACM, 1973.

14

Showing Optimality of RMS:
Ø Consider two tasks with different periods.
Ø Is a non-preemptive schedule feasible?

C1
T1

C2
T2

15

Showing Optimality of RMS:
Ø Non-preemptive schedule is not feasible. Some instance of

the Red Task (2) will not finish within its period if we do
non-preemptive scheduling.

C1
T1

C2
T2

16

Showing Optimality of RMS:
Ø What if we had a preemptive scheduling with higher

priority for red task?

C1
T1

C2
T2

17

Showing Optimality of RMS:
Ø Preemptive schedule with the red task having higher

priority is feasible. Note that preemption of the purple
task extends its completion time.

preempted
C1 C1

T1

18

Alignment of tasks
Ø Completion time of the lower priority

task is worst when its starting phase
matches that of higher priority tasks.

Ø Thus, when checking schedule
feasibility, it is sufficient to consider
only the worst case: All tasks start
their cycles at the same time.

T1
C1

19

Showing Optimality of RMS: (for two tasks)
Ø It is sufficient to show that if a non-RMS schedule is

feasible, then the RMS schedule is feasible.
Ø Consider two tasks as follows:

C1
T1

C2
T2

20

From this, we can see that the non-RMS schedule
is feasible if and only if

We can then show that this condition implies that
the RMS schedule is feasible.

Showing Optimality of RMS: (for two tasks)

221 TCC £+

The non-RMS, fixed priority schedule looks like this:

T2

C2C1

21

The condition for the non-RMS schedule feasibility:

is clearly sufficient (though not necessary) for
feasibility of the RMS schedule.

Showing Optimality of RMS: (for two tasks)

221 TCC £+

The RMS schedule looks like this: (task with smaller period moves earlier)

T2

C2 C1

22

Comments
Ø This proof can be extended to an arbitrary number of tasks

(though it gets much more tedious).
Ø This proof gives optimality only w.r.t. feasibility. It says

nothing about other optimality criteria.
Ø Practical implementation:
§ Timer interrupt at greatest common divisor of the periods.
§ Multiple timers

23

Ø Given n independent one-time tasks with deadlines
d1 , … , dn, schedule them to minimize the maximum lateness, defined as

Ø where fi is the finishing time of task i. Note that this is negative iff all
deadlines are met.

Ø Earliest Due Date (EDD) algorithm: Execute them in order of non-
decreasing deadlines.

Ø Note that this does not require preemption.

Jackson’s Algorithm: EDD (1955)

{ }iini
dfL -=

££1max max

24

EDD is Optimal
Ø Optimal in the Sense of Minimizing Maximum Lateness
§ To prove, use an interchange argument. Given a schedule S that is not

EDD, there must be tasks a and b where a immediately precedes b in the
schedule but
da > db. Why?

§ We can prove that this schedule can be improved by interchanging a and
b. Thus, no non-EDD schedule is achieves smaller max lateness than
EDD, so the EDD schedule must be optimal.

25

Consider a non-EDD Schedule S
Ø There must be tasks a and b where a immediately

precedes b in the schedule but da > db

a b
fa fb

time { } bbbbaa dfdfdfL -=--= ,maxmax

ab

ba ff =¢bf ¢

{ }bbaa dfdfL -¢-¢=¢ ,maxmax

26

Horn’s algorithm: EDF (1974)

Ø Extend EDD by allowing tasks to “arrive” (become ready)
at any time.

Ø Earliest deadline first (EDF): Given a set of n independent
tasks with arbitrary arrival times, any algorithm that at any
instant executes the task with the earliest absolute
deadline among all arrived tasks is optimal w.r.t.
minimizing the maximum lateness.

Ø Proof uses a similar interchange argument.

27

Using EDF for Periodic Tasks
Ø The EDF algorithm can be applied to periodic tasks as well

as aperiodic tasks.
§ Simplest use: Deadline is the end of the period.
§ Alternative use: Separately specify deadline (relative to the period start

time) and period.

28

RMS vs. EDF? Which one is better?
Ø What are the pros and cons of each?

29

Comparison of EDF and RMS
Ø Favoring RMS
§ Scheduling decisions are simpler (fixed priorities vs. the dynamic

priorities required by EDF. EDF scheduler must maintain a list of ready
tasks that is sorted by priority.)

30

Comparison of EDF and RMS
Ø Favoring EDF
§ Since EDF is optimal w.r.t. maximum lateness, it is also optimal w.r.t.

feasibility. RMS is only optimal w.r.t. feasibility. For infeasible schedules,
RMS completely blocks lower priority tasks, resulting in unbounded
maximum lateness.

§ EDF can achieve full utilization where RMS fails to do that.
§ EDF results in fewer preemptions in practice, and hence less overhead

for context switching.
§ Deadlines can be different from the period.

31

Precedence Constraints
Ø A directed acyclic graph (DAG) shows precedences, which

indicate which tasks must complete before other tasks
start.

1
2

3

4

5

6

DAG, showing that task 1 must complete before tasks 2
and 3 can be started, etc.

32

Example: EDF Schedule
Ø Is this feasible?

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

33

EDF is not optimal under precedence constraints
Ø The EDF schedule chooses task 3 at time 1 because it has

an earlier deadline. This choice results in task 4 missing
its deadline.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

34

Latest Deadline First (LDF) (Lawler, 1973)

Ø The LDF scheduling strategy builds a schedule backwards.
Given a DAG, choose the leaf node with the latest
deadline to be scheduled last, and work backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

35

Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards.
Given a DAG, choose the leaf node with the latest
deadline to be scheduled last, and work backwards.

36

Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards.
Given a DAG, choose the leaf node with the latest
deadline to be scheduled last, and work backwards.

37

Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards.
Given a DAG, choose the leaf node with the latest
deadline to be scheduled last, and work backwards.

38

Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards.
Given a DAG, choose the leaf node with the latest
deadline to be scheduled last, and work backwards.

39

Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards.
Given a DAG, choose the leaf node with the latest
deadline to be scheduled last, and work backwards.

40

Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards.
Given a DAG, choose the leaf node with the latest
deadline to be scheduled last, and work backwards.

41

LDF is optimal under precedence constraints

Ø The LDF schedule shown at the bottom respects all
precedences and meets all deadlines.

Ø Also minimizes maximum lateness

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

42

Latest Deadline First (LDF) (Lawler, 1973)
Ø LDF is optimal in the sense that it minimizes the

maximum lateness.

Ø It does not require preemption. (We’ll see that EDF can be
made to work with preemption.)

Ø However, it requires that all tasks be available and their
precedences known before any task is executed.

43

EDF with Precedences
Ø With a preemptive scheduler, EDF can be modified to

account for precedences and to allow tasks to arrive at
arbitrary times. Simply adjust the deadlines and arrival
times according to the precedences.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Recall that for the tasks at the left, EDF
yields the schedule above, where task 4
misses its deadline.

44

EDF with Precedences Modifying release times

),max(iijj Crrr +=¢

Ø Given n tasks with precedences and release times ri, if
task i immediately precedes task j, then modify the release
times as follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0

C3 = 1
d3 = 4
r�3 = 1

C2 = 1
d2 = 5
r�2 = 1

C4 = 1
d4 = 3
r�4 = 2

C5 = 1
d5 = 5
r�5 = 2

C6 = 1
d6 = 6
r�6 = 2

ri = 0
assume:

45

EDF with Precedences Modifying deadlines

),min(jjii Cddd -¢=¢

Ø Given n tasks with precedences and deadlines di, if task i
immediately precedes task j, then modify the deadlines as
follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0
d�2 = 1

C3 = 1
d3 = 4
r�3 = 1
d�3 = 4

C2 = 1
d2 = 5
r�2 = 1
d�2 = 2

C4 = 1
d4 = 3
r�4 = 2
d'4 = 3

C5 = 1
d5 = 5
r�5 = 2
d�5 = 5

C6 = 1
d6 = 6
r�6 = 2
d�6 = 6

Using the revised release times and
deadlines, the above EDF schedule is
optimal and meets all deadlines.

ri = 0
assume:

46

Optimality
Ø EDF with precedences is optimal in the sense of

minimizing the maximum lateness.

