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Real-Time Systems
Ø The operating system, and in particular the scheduler, is perhaps the 

most important component

Ø Correctness of the system depends not only on the logical result of the 
computation but also on the time at which the results are produced

Ø Tasks attempt to react to events that take place in the outside world
Ø These events occur in “real time” and tasks must be able to keep up with 

them

•Control of laboratory experiments
•Process control in industrial plants
•Robotics
•Air traffic control
•Telecommunications
•Military command and control systems

Examples:
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Hard and Soft  Real-Time Tasks
Ø Hard 
§ One that must meet its deadline
§ Otherwise it will cause 

unacceptable damage or a fatal 
error to the system

Ø Soft
§ Has an associated deadline that 

is desirable but not mandatory
§ It still makes sense to schedule 

and complete the task even if it 
has passed its deadline
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Periodic and Aperiodic Tasks
Ø Periodic tasks
§ Requirement may be stated as:

o Once per period T
o Exactly T units apart

Ø Aperiodic tasks
§ Has a deadline by which it must finish or start
§ May have a constraint on both start and finish time
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Characteristics of Real Time Systems

Real-time operating systems have requirements in five 
general areas:

Determinism

Responsiveness

User control

Reliability

Fail-soft operation
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Determinism
Ø Concerned with how long an operating system delays 

before acknowledging an interrupt
Ø Operations are performed at fixed, predetermined times or 

within predetermined time intervals
o When multiple processes are competing for resources and processor 

time, no system will be fully deterministic

The extent to which an 
operating system can 

deterministically satisfy 
requests depends on:

The speed with which it 
can respond to interrupts

Whether the system has 
sufficient capacity to 

handle all requests within 
the required time
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Responsiveness
Ø Together with determinism make up the response time to 

external events
o Critical for real-time systems that must meet timing requirements 

imposed by individuals, devices, and data flows external to the system

Ø Concerned with how long, after acknowledgment, it takes 
an operating system to service the interrupt

• Amount of time required to initially handle the interrupt and begin execution of the interrupt 
service routine

• Amount of time required to perform the ISR
• Effect of interrupt nesting

Responsiveness includes:
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User Control
Ø Generally much broader in a real-time operating system than 

in ordinary operating systems
Ø It is essential to allow the user fine-grained control over task 

priority
Ø User should be able to distinguish between hard and soft tasks 

and to specify relative priorities within each class
Ø May allow user to specify such characteristics as:

Paging or process 
swapping

What processes must 
always be resident 
in main memory

What disk transfer 
algorithms are to 

be used

What rights the 
processes in various 
priority bands have
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Reliability
Ø More important for real-time systems than non-real time 

systems
Ø Real-time systems respond to and control events in real 

time so loss or degradation of performance may have 
catastrophic consequences such as:
o Financial loss
o Major equipment damage
o Loss of life
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Fail-Soft Operation
Ø A characteristic that refers to the ability of a system to fail 

in such a way as to preserve as much capability and data 
as possible

Ø Important aspect is stability
o A real-time system is stable if the system will meet the deadlines of its 

most critical, highest-priority tasks even if some less critical task 
deadlines are not always met



11

Features common to Most RTOSs
Ø A stricter use of priorities than in an ordinary OS, with 

preemptive scheduling that is designed to meet real-time 
requirements

Ø Interrupt latency is bounded and relatively short
Ø More precise and predictable timing characteristics than 

general purpose OSs
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Rate Monotonic Scheduling
Ø Simple process model: n tasks invoked periodically with:
§ periods T1, … ,Tn, which equal the deadlines
§ known worst-case execution times (WCET) C1, … ,Cn 
o no mutexes, semaphores, or blocking I/O
§ independent tasks, no precedence constraints
§ fixed priorities
§ preemptive scheduling

Ø Rate Montonic Scheduling (RMS): priorities ordered by 
period (smallest period has the highest priority) 
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Feasibility for RMS
Ø Feasibility is defined for RMS to mean that every task 

executes to completion once within its designated period.

Ø Theorem: Under the simple process model, if any priority 
assignment yields a feasible schedule, then RMS also 
yields a feasible schedule.

Ø RMS is optimal in the sense of feasibility.
Liu and Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environment,” J. ACM, 1973.
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Showing Optimality of RMS:
Ø Consider two tasks with different periods.
Ø Is a non-preemptive schedule feasible?

C1
T1

C2
T2
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Showing Optimality of RMS:
Ø Non-preemptive schedule is not feasible. Some instance of 

the Red Task (2) will not finish within its period if we do 
non-preemptive scheduling.

C1
T1

C2
T2
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Showing Optimality of RMS:
Ø What if we had a preemptive scheduling with higher 

priority for red task?

C1
T1

C2
T2
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Showing Optimality of RMS:
Ø Preemptive schedule with the red task having higher 

priority is feasible. Note that preemption of the purple 
task extends its completion time.

preempted
C1 C1

T1
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Alignment of tasks
Ø Completion time of the lower priority 

task is worst when its starting phase
matches that of higher priority tasks.

Ø Thus, when checking schedule 
feasibility, it is sufficient to consider 
only the worst case: All tasks start 
their cycles at the same time.

T1
C1
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Showing Optimality of RMS: (for two tasks)
Ø It is sufficient to show that if a non-RMS schedule is 

feasible, then the RMS schedule is feasible.
Ø Consider two tasks as follows:

C1
T1

C2
T2
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From this, we can see that the non-RMS schedule 
is feasible if and only if

We can then show that this condition implies that 
the RMS schedule is feasible.

Showing Optimality of RMS: (for two tasks)

221 TCC £+

The non-RMS, fixed priority schedule looks like this:

T2

C2C1
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The condition for the non-RMS schedule feasibility:

is clearly sufficient (though not necessary) for 
feasibility of the RMS schedule.

Showing Optimality of RMS: (for two tasks)

221 TCC £+

The RMS schedule looks like this: (task with smaller period moves earlier)

T2

C2 C1
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Comments
Ø This proof can be extended to an arbitrary number of tasks 

(though it gets much more tedious).
Ø This proof gives optimality only w.r.t. feasibility. It says 

nothing about other optimality criteria.
Ø Practical implementation:
§ Timer interrupt at greatest common divisor of the periods.
§ Multiple timers
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Ø Given n independent one-time tasks with deadlines
d1 , … , dn, schedule them to minimize the maximum lateness, defined as

Ø where fi is the finishing time of task i. Note that this is negative iff all 
deadlines are met.

Ø Earliest Due Date (EDD) algorithm: Execute them in order of non-
decreasing deadlines. 

Ø Note that this does not require preemption.

Jackson’s Algorithm: EDD (1955)

{ }iini
dfL -=

££1max max
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EDD is Optimal
Ø Optimal in the Sense of Minimizing Maximum Lateness
§ To prove, use an interchange argument. Given a schedule S that is not 

EDD, there must be tasks a and b where a immediately precedes b in the 
schedule but 
da > db.  Why? 

§ We can prove that this schedule can be improved by interchanging a and 
b. Thus, no non-EDD schedule is achieves smaller max lateness than 
EDD, so the EDD schedule must be optimal.
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Consider a non-EDD Schedule S
Ø There must be tasks a and b where a immediately 

precedes b in the schedule but da > db

a b
fa fb

time { } bbbbaa dfdfdfL -=--= ,maxmax

ab

ba ff =¢bf ¢

{ }bbaa dfdfL -¢-¢=¢ ,maxmax



26

Horn’s algorithm: EDF (1974)

Ø Extend EDD by allowing tasks to “arrive” (become ready) 
at any time.

Ø Earliest deadline first (EDF): Given a set of n independent 
tasks with arbitrary arrival times, any algorithm that at any 
instant executes the task with the earliest absolute 
deadline among all arrived tasks is optimal w.r.t. 
minimizing the maximum lateness.

Ø Proof uses a similar interchange argument.
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Using EDF for Periodic Tasks
Ø The EDF algorithm can be applied to periodic tasks as well 

as aperiodic tasks.
§ Simplest use: Deadline is the end of the period.
§ Alternative use: Separately specify deadline (relative to the period start 

time) and period.
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RMS vs. EDF? Which one is better?
Ø What are the pros and cons of each?
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Comparison of EDF and RMS
Ø Favoring RMS
§ Scheduling decisions are simpler (fixed priorities vs. the dynamic 

priorities required by EDF. EDF scheduler must maintain a list of ready 
tasks that is sorted by priority.)
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Comparison of EDF and RMS
Ø Favoring EDF
§ Since EDF is optimal w.r.t. maximum lateness, it is also optimal w.r.t. 

feasibility. RMS is only optimal w.r.t. feasibility. For infeasible schedules, 
RMS completely blocks lower priority tasks, resulting in unbounded 
maximum lateness.

§ EDF can achieve full utilization where RMS fails to do that.
§ EDF results in fewer preemptions in practice, and hence less overhead 

for context switching.
§ Deadlines can be different from the period.
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Precedence Constraints
Ø A directed acyclic graph (DAG) shows precedences, which 

indicate which tasks must complete before other tasks 
start.

1
2

3

4

5

6

DAG, showing that task 1 must complete before tasks 2 
and 3 can be started, etc.
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Example: EDF Schedule
Ø Is this feasible?  

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6
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EDF is not optimal under precedence constraints
Ø The EDF schedule chooses task 3 at time 1 because it has 

an earlier deadline. This choice results in task 4 missing 
its deadline.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6
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Latest Deadline First (LDF) (Lawler, 1973)

Ø The LDF scheduling strategy builds a schedule backwards. 
Given a DAG, choose the leaf node with the latest 
deadline to be scheduled last, and work backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6
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Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards. 
Given a DAG, choose the leaf node with the latest 
deadline to be scheduled last, and work backwards.
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Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards. 
Given a DAG, choose the leaf node with the latest 
deadline to be scheduled last, and work backwards.
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Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards. 
Given a DAG, choose the leaf node with the latest 
deadline to be scheduled last, and work backwards.
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Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards. 
Given a DAG, choose the leaf node with the latest 
deadline to be scheduled last, and work backwards.
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Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards. 
Given a DAG, choose the leaf node with the latest 
deadline to be scheduled last, and work backwards.
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Latest Deadline First (LDF) (Lawler, 1973)

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Ø The LDF scheduling strategy builds a schedule backwards. 
Given a DAG, choose the leaf node with the latest 
deadline to be scheduled last, and work backwards.
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LDF is optimal under precedence constraints

Ø The LDF schedule shown at the bottom respects all 
precedences and meets all deadlines.

Ø Also minimizes maximum lateness

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6
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Latest Deadline First (LDF) (Lawler, 1973)
Ø LDF is optimal in the sense that it minimizes the 

maximum lateness.

Ø It does not require preemption. (We’ll see that EDF can be 
made to work with preemption.)

Ø However, it requires that all tasks be available and their 
precedences known before any task is executed.
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EDF with Precedences
Ø With a preemptive scheduler, EDF can be modified to 

account for precedences and to allow tasks to arrive at 
arbitrary times. Simply adjust the deadlines and arrival 
times according to the precedences.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Recall that for the tasks at the left, EDF 
yields the schedule above, where task 4 
misses its deadline.
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EDF with Precedences Modifying release times

),max( iijj Crrr +=¢

Ø Given n tasks with precedences and release times ri, if 
task i immediately precedes task j, then modify the release 
times as follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0

C3 = 1
d3 = 4
r�3 = 1

C2 = 1
d2 = 5
r�2 = 1

C4 = 1
d4 = 3
r�4 = 2

C5 = 1
d5 = 5
r�5 = 2

C6 = 1
d6 = 6
r�6 = 2

ri = 0
assume:
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EDF with Precedences Modifying deadlines

),min( jjii Cddd -¢=¢

Ø Given n tasks with precedences and deadlines di, if task i
immediately precedes task j, then modify the deadlines as 
follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0
d�2 = 1

C3 = 1
d3 = 4
r�3 = 1
d�3 = 4

C2 = 1
d2 = 5
r�2 = 1
d�2 = 2

C4 = 1
d4 = 3
r�4 = 2
d'4 = 3

C5 = 1
d5 = 5
r�5 = 2
d�5 = 5

C6 = 1
d6 = 6
r�6 = 2
d�6 = 6

Using the revised release times and 
deadlines, the above EDF schedule is 
optimal and meets all deadlines.

ri = 0
assume:



46

Optimality
Ø EDF with precedences is optimal in the sense of 

minimizing the maximum lateness.


