
1

Cyber-Physical Systems

Scheduling
ICEN 553/453– Fall 2018
Prof. Dola Saha

2

Quick Recap
1. What characterizes the memory architecture of a system?
2. What are the issues with heaps in embedded/real-time

systems?
3. How do polling and interrupts compare?
4. What is the difference between concurrency and

parallelism?
5. What are threads? What makes them challenging wrt.

concurrency?

3

Scheduler
Ø A scheduler makes the decision about what to do next at

certain points in time
Ø When a processor becomes available, which process will

be executed

4

Scheduler Policy
Ø Different schedulers will have different goals
§ Maximize throughput
§ Minimize latency
§ Prevent indefinite postponement
§ Complete process by given deadline
§ Maximize processor utilization

5

Scheduler Levels
Ø High-level scheduling
§ Determines which jobs can compete for resources
§ Controls number of processes in system at one time

Ø Intermediate-level scheduling
§ Determines which processes can compete for processors
§ Responds to fluctuations in system load

Ø Low-level scheduling
§ Assigns priorities
§ Assigns processors to processes

6

Priorities
Ø Static priorities
§ Priority assigned to a process does not change
§ Easy to implement
§ Low overhead
§ Not responsive to changes in environment

Ø Dynamic priorities
§ Responsive to change
§ Promote smooth interactivity
§ Incur more overhead, justified by increased responsiveness

7

How to decide which thread to schedule?
ØConsiderations:
§ Preemptive vs. non-preemptive scheduling
§ Periodic vs. aperiodic tasks
§ Fixed priority vs. dynamic priority
§ Priority inversion anomalies
§ Other scheduling anomalies

8

Non-Preemptive vs Preemptive
Ø Non-Preemptive
§ Once a process is in the running state, it

will continue until it terminates or
blocks itself for I/O

Ø Preemptive
§ Currently running process may be

interrupted and moved to ready state by
the OS

§ Decision to preempt may be performed
o when a new process arrives,
o when an interrupt occurs that places a

blocked process in the Ready state, or
o periodically, based on a clock interrupt

9

Preemptive Scheduling
Ø Assume all threads have priorities
§ either statically assigned (constant for the duration of the thread)
§ or dynamically assigned (can vary).

Ø Assume that the kernel keeps track of which threads are
“enabled”

Ø Preemptive scheduling:
§ At any instant, the enabled thread with the highest priority is executing.
§ Whenever any thread changes priority or enabled status, the kernel can

dispatch a new thread.

10

Periodic scheduling

Ø Each execution instance of a task is called a job.
Ø For periodic scheduling, the best that we can do is to

design an algorithm which will always find a schedule if
one exists.

Ø A scheduler is defined to be optimal iff it will find a
schedule if one exists.

T1

T2

11

Scheduling Policies
Ø First Come First Serve
Ø Round Robin
Ø Shortest Process Next
Ø Shortest Remaining Time Next
Ø Highest Response Ratio Next
Ø Feedback Scheduler
Ø Fair Share Scheduler

12

First Come First Serve (FCFS)
Ø Processes dispatched according to arrival time
Ø Simplest scheme
Ø Nonpreemptible
Ø Rarely used as primary scheduling algorithm
Ø Implemented using FIFO
Ø Tends to favor processor-bound processes over I/O-bound

processes

13

Round Robin
Ø Based on FIFO
Ø Processes run only for a limited amount of time called a

time slice or a quantum
Ø Preemptible
Ø Requires the system to maintain several processes in

memory to minimize overhead
Ø Often used as part of more complex algorithms

14

Effect of Quantum Size

Process allocated
time quantum

Time

Response time
s

Quantum
q

q - s

Figure 9.6 Effect of Size of Preemption Time Quantum

Interaction
complete

(a) Time quantum greater than typical interaction

Process allocated
time quantum

s

q

Process allocated
time quantum

Process
preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction
complete

Process allocated
time quantum

Time

Response time
s

Quantum
q

q - s

Figure 9.6 Effect of Size of Preemption Time Quantum

Interaction
complete

(a) Time quantum greater than typical interaction

Process allocated
time quantum

s

q

Process allocated
time quantum

Process
preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction
complete

q < Typical Interaction Time q > Typical Interaction Time

15

Quantum Size
Ø Determines response time to interactive requests
Ø Very large quantum size
§ Processes run for long periods
§ Degenerates to FIFO

Ø Very small quantum size
§ System spends more time context switching than running processes

Ø Middle-ground
§ Long enough for interactive processes to issue I/O request
§ Batch processes still get majority of processor time

16

Virtual Round Robin
Ø FCFS auxiliary queue to

which processes are moved
after being released from an
I/O block.

Ø When a dispatching decision
is to be made, processes in
the auxiliary queue get
preference over those in the
main ready queue.

Figure 9.7 Queuing Diagram for Virtual Round-Robin Scheduler

I/O 1 Wait

I/O 2 Wait

I/O n Wait

Dispatch

Time-out

Release
Ready Queue

Admit
Processor

I/O 1 Queue

Auxiliary Queue

I/O 1
Occurs

I/O 2
Occurs

I/O n
Occurs

I/O 2 Queue

I/O n Queue

17

Virtual Round Robin
Ø When a process is dispatched

from the auxiliary queue, it runs
no longer than a time equal to
the basic time quantum minus
the total time spent running
since it was last selected from
the main ready queue.

Ø Performance studies indicate
that this approach is better than
round robin in terms of fairness.

Figure 9.7 Queuing Diagram for Virtual Round-Robin Scheduler

I/O 1 Wait

I/O 2 Wait

I/O n Wait

Dispatch

Time-out

Release
Ready Queue

Admit
Processor

I/O 1 Queue

Auxiliary Queue

I/O 1
Occurs

I/O 2
Occurs

I/O n
Occurs

I/O 2 Queue

I/O n Queue

18

Shortest Process Next (SPN) Scheduling
Ø Scheduler selects process with smallest time to finish
§ Lower average wait time than FIFO
o Reduces the number of waiting processes
§ Potentially large variance in wait times, starvation for longer processes
§ Nonpreemptive
o Results in slow response times to arriving interactive requests
§ Relies on estimates of time-to-completion
o Can be inaccurate
§ Unsuitable for use in modern interactive systems

19

Shortest Remaining Time (SRT) Scheduling
Ø Preemptive version of SPF
Ø Shorter arriving processes preempt a running process
Ø Very large variance of response times: long processes wait

even longer than under SPF
Ø Not always optimal
§ Short incoming process can preempt a running process that is near

completion
§ Context-switching overhead can become significant

20

Highest Response Ratio Next (HRRN) Scheduling

Ø Chooses next process with the greatest ratio

Ø Attractive because it accounts for the age of the process

Ø While shorter jobs are favored, aging without service increases
the ratio so that a longer process will eventually get past
competing shorter jobs

21

Feedback Scheduling
Ø Scheduling is done on a preemptive (at

time quantum) basis, and a dynamic
priority mechanism is used.

Ø When a process first enters the system, it
is placed in RQ0.

Ø After its first preemption, when it returns
to the Ready state, it is placed in RQ1.

Ø Each subsequent time that it is preempted,
it is demoted to the next lower-priority
queue.

Figure 9.10 Feedback Scheduling

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQn

Processor

22

Performance
Ø Any scheduling policy that chooses the next item to be

served independent of service time obeys the relationship:

23

Single Server Queue with Two Priorities

24

Single Server Queue with Two Priorities

25

Fair Share Scheduler
§ Scheduling decisions based on the process sets
§ Each user is assigned a share of the processor
§ Objective is to monitor usage to give fewer resources to users who have

had more than their fair share and more to those who have had less
than their fair share

§ Some user groups more important than others
§ Ensures that less important groups cannot monopolize resources
§ Unused resources distributed according to the proportion of resources

each group has been allocated
§ Groups not meeting resource-utilization goals get higher priority

26

Fair Share
CPUj(i – 1)

CPUj(i) = 2

GCPUk(i - 1)
GCPUk(i) = 2

CPUj(i) GCPUk(i)
Pj(i) = Basej + 2 + 4 x Wk

where

CPUj(i) = measure of processor utilization by process j through interval i,
GCPUk(i) = measure of processor utilization of group k through interval i,
Pj(i) = priority of process j at beginning of interval i; lower values equal

higher priorities,
Basej = base priority of process j, and
Wk = weighting assigned to group k, with the constraint that and

0 < Wk < 1 and ∑ Wk = 1.

27

Example
Priority

Colored rectangle represents executing process

60 0
1
2
�
�

60

0
1
2
�
�

60

74 15
16
17
�
�

75

15
16
17
�
�

75

78 18
19
20
�
�

78

18
19
20
�
�

78

67 0
1
2
�
�

60

15
16
17
�
�

75

74 15 15
16
17
�
�

75

60 0
1
2
�
�

60

0
1
2
�
�

60

60 0 0
1
2
�
�

60

60 0 0

90 30 30

96 37 37

98 39 39 70 3 18 76 15 18

90 30 30

81 7 37 93 30 37

75 0 30

60 0 0

Process
CPU
count

Process A

Group 1 Group 2

Process B Process C
Group
CPU
count

Process
CPU
count

Group
CPU
count

Process
CPU
count

Group
CPU
countPriority Priority

Time
0

1

2

3

4

5

Figure 9.16 Example of Fair Share Scheduler—Three Processes, Two Groups

28

UNIX Scheduler
Ø Designed to provide good response time for interactive

users while ensuring that low-priority background jobs do
not starve

Ø Employs multilevel feedback using round robin within
each of the priority queues

Ø Makes use of one-second preemption
Ø Priority is based on process type and execution history

29

Scheduling Formula

30

Characteristics of Various Scheduling Policies

