Cyber-Physical Systems

ICEN 553/453 – Fall 2018 Prof. Dola Saha

1

Analog-to-Digital Converter (ADC)

- > ADC is important almost to all application fields
- Converts a continuous-time voltage signal within a given range to discrete-time digital values to quantify the voltage's amplitudes

Analog-to-Digital Converter (ADC)

> Three performance parameters:

- sampling rate number of conversions per unit time
- Resolution number of bits an ADC output
- power dissipation power efficiency
- > Many ADC implementations:
 - sigma-delta (low sampling rate, high resolution)
 - successive-approximation (low power data acquisition)
 - Pipeline (high speed applications)

Successive-approximation (SAR) ADC

Digital Quantization

- > SAR Control Logic performs Binary Search algorithm
 - DAC output is set to 1/2V_{REF}
 - If $V_{IN} > V_{REF}$, SAR Control Logic sets the MSB of ADC, else MSB is cleared
 - V_{DAC} is set to $\frac{34}{4}$ V_{REF} or $\frac{14}{4}$ V_{REF} depending on output of previous step
 - Repeat until ADC output has been determined
- > How long does it take to converge?

Successive-approximation (SAR) ADC

- Binary search algorithm to gradually approaches the input voltage
- Settle into $\pm \frac{1}{2}$ LSB bound within the time allowed

 $T_{ADC} = T_{sampling} + T_{Conversion}$

 $T_{Conversion} = N \times T_{ADC_Clock}$

T_{sampling} is software configurable

ADC Conversion Time

 $T_{ADC} = T_{sampling} + T_{Conversion}$

Suppose ADC_{CLK} = 16 MHz and Sampling time = 4 cycles

For 12-bit ADC $T_{ADC} = 4 + 12 = 16$ cycles = 1µs For 6-bit ADC $T_{ADC} = 4 + 6 = 10$ cycles = 625ns

Determining Minimum Sampling Time

When the switch is closed, the voltage across the capacitor increases exponentially.

t= time required for the sample capacitor voltage to settle to within one-fourth of an LSB of the input voltage

Sampling time is often software programmable!

Tradeoff

Resolution

- > Resolution is determined by number of bits (in binary) to represent an analog input.
- > Example of two quantization methods (N = 3)

Quantization Error

> Example: for 12-bit ADC and input voltage range [0, 3V]

Max Quantization Error =
$$\frac{1}{2}\Delta = \frac{3V}{2 \times 2^{12}} = 0.367 mV$$

➢ How to reduce error?

Aliasing

- > Example 1:
 - Consider a sinusoidal sound signal at 1 kHz: $x(t) = \cos(2000\pi t)$
 - Sampling interval T = 1/8000
 - Samples $s(n) = f(x(nT)) = \cos(\pi n/4)$
- > Example 2:
 - Consider a sinusoidal sound signal at 9 kHz : $x'(t) = \cos(18000\pi t)$
 - Sampling interval T = 1/8000
 - Samples $s'^{(n)} = f(x(nT)) = \cos\left(\frac{9\pi n}{4}\right) = \cos\left(\frac{\pi n}{4} + 2\pi n\right) = \cos\left(\frac{\pi n}{4}\right) = s(n)$
- There are many distinct functions x that when sampled will yield the same signal s. **UNIVERSITY ATALBANY**

Minimum Sampling Rate

- In order to be able to reconstruct the analog input signal, the sampling rate should be at least twice the maximum frequency component contained in the input signal
- > Example of two sine waves have the same sampling values. This is called aliasing.

Nyquist-Shannon Sampling Theorem

- > Antialiasing
 - Pre-filtering: use analog hardware to filtering out high-frequency components and only sampling the low-frequency components. The high-frequency components are ignored.
 - Post-filtering: Oversample continuous signal, then use software to filter out high-frequency components

ADC Conversion

- Input Range
 - Unipolar (0, V_{ADCMAX})
 - Bipolar (-V_{ADCMAX}, +V_{ADCMAX})
 - Clipping:
 - $_{\odot}~$ If $|V_{\rm IN}|$ > $|V_{\rm ADCMAX}|$, then $|V_{\rm OUT}|$ = $|V_{\rm ADCMAX}|$

Automatic Gain Control (AGC)

- Closed loop Feedback regulating circuit in an amplifier
- > Maintains a suitable signal amplitude at its output, despite variation of the signal amplitude at the input
- The average or peak output signal level is used to dynamically adjust the gain of the amplifiers
- Example Use: Radio Receivers, Audio Recorders, Microphone

Power and RMS of Signal

> Average Power of a signal

$$P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x_n|^2$$
$$C = \frac{|x_{PEAK}|}{x_{PMC}}$$

- Crest Factor
- Square root of the arithmetic mean of the squares of the values $\sqrt{\frac{1}{2}}$

$$x_{RMS} = \sqrt{\frac{1}{n}(x_1^2 + x_2^2 + \dots + x_n^2)}$$

Crest Factor

Crest Factor in dB

$$C_{dB} = 20 \log_{10} \frac{|x_{PEAK}|}{x_{RMS}}$$

> Peak to Average Power Ratio (PAPR)

$$PAPR = \frac{|x_{PEAK}|^2}{x_{RMS}^2}$$
$$PAPR_{dB} = 10\log_{10}\frac{|x_{PEAK}|^2}{x_{RMS}^2} = C_{dB}$$

Example Gain Control

Figure 1.

Digital-to-analog converter (DAC)

Converts digital data into a voltage signal by a N-bit DAC

$$DAC_{output} = V_{ref} \times \frac{Digital \, Value}{2^N}$$

➢ For 12-bit DAC

$$DAC_{output} = V_{ref} \times \frac{Digital \, Value}{4096}$$

- Many applications:
 - digital audio
 - waveform generation
- > Performance parameters
 - speed
 - resolution
 - power dissipation
 - glitches

DAC Implementations

- Pulse-width modulator (PWM)
- Binary-weighted resistor (We will use this one as an example)
- R-2R ladder (A special case of binary-weighted resistor)

Binary-weighted Resistor DAC

Digital Music

	0	1	2	3	4	5	6	7	8
С	16.352	32.703	65.406	130.813	261.626	523.251	1046.502	2093.005	4186.009
C#	17.324	34.648	69.296	138.591	277.183	554.365	1108.731	2217.461	4434.922
D	18.354	36.708	73.416	146.832	293.665	587.330	1174.659	2349.318	4698.636
D#	19.445	38.891	77.782	155.563	311.127	622.254	1244.508	2489.016	4978.032
Е	20.602	41.203	82.407	164.814	329.628	659.255	1318.510	2637.020	5274.041
F	21.827	43.654	87.307	174.614	349.228	698.456	1396.913	2793.826	5587.652
F#	23.125	46.249	92.499	184.997	369.994	739.989	1479.978	2959.955	5919.911
G	24.500	48.999	97.999	195.998	391.995	783.991	1567.982	3135.963	6271.927
G#	25.957	51.913	103.826	207.652	415.305	830.609	1661.219	3322.438	6644.875
А	27.500	55.000	110.000	220.000	440.000	880.000	1760.000	3520.000	7040.000
A#	29.135	58.270	116.541	233.082	466.164	932.328	1864.655	3729.310	7458.620
В	30.868	61.735	123.471	246.942	493.883	987.767	1975.533	3951.066	7902.133

Musical Instrument Digital Interface (MIDI) standard assigns the note A as pitch 69.

21

Digital Music

- No FPU available on the processor to compute sine functions
- > Software FP to compute sine is slow
- Solution: Table Lookup
 - Compute sine values and store in table as fixpoint format
 - Look up the table for result
 - Linear interpolation if necessary

Digital Music: Attack, Decay, Sustain, Release (ADSR)

> Amplitude Modulation of Tones (modulate music amplitude)

Digital Music: ADSR Amplitude Modulation

