Cyber-Physical Systems

ADC / DAC

ICEN 553/453- Fall 2018
Prof. Dola Saha

Analog-to-Digital Converter (ADC)

$>$ ADC is important almost to all application fields
> Converts a continuous-time voltage signal within a given range to discrete-time digital values to quantify the voltage's amplitudes

Analog-to-Digital Converter (ADC)

> Three performance parameters:

- sampling rate - number of conversions per unit time
- Resolution - number of bits an ADC output
- power dissipation - power efficiency
> Many ADC implementations:
- sigma-delta (low sampling rate, high resolution)
- successive-approximation (low power data acquisition)
- Pipeline (high speed applications)

Successive-approximation (SAR) ADC

Digital Quantization

\rightarrow SAR Control Logic performs Binary Search algorithm

- DAC output is set to $1 / 2 \mathrm{~V}_{\text {REF }}$
- If $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {REF }}$, SAR Control Logic sets the MSB of ADC, else MSB is cleared
- $V_{\text {DAC }}$ is set to $3 / 4 \mathrm{~V}_{\text {REF }}$ or $1 / 4 \mathrm{~V}_{\text {REF }}$ depending on output of previous step
- Repeat until ADC output has been determined
> How long does it take to converge?

Successive-approximation (SAR) ADC

- Binary search algorithm to gradually approaches the input voltage
- Settle into $\pm 1 / 2$ LSB bound within the time allowed
$\mathrm{T}_{\mathrm{ADC}}=\mathrm{T}_{\text {sampling }}+\mathrm{T}_{\text {Conversion }}$
$\mathrm{T}_{\text {Conversion }}=\mathrm{N} \times \mathrm{T}_{\text {ADC_Clock }}$
$\mathrm{T}_{\text {sampling }}$ is software configurable

ADC Conversion Time

$$
\mathrm{T}_{\mathrm{ADC}}=\mathrm{T}_{\text {sampling }}+\mathrm{T}_{\text {Conversion }}
$$

$>$ Suppose $\mathrm{ADC}_{\text {CLK }}=16 \mathrm{MHz}$ and Sampling time $=4$ cycles
For 12-bit ADC

$$
\mathrm{T}_{\mathrm{ADC}}=4+12=16 \text { cycles }=1 \mu \mathrm{~s}
$$

For 6-bit ADC

$$
\mathrm{T}_{\mathrm{ADC}}=4+6=10 \text { cycles }=625 \mathrm{~ns}
$$

Determining Minimum Sampling Time

> When the switch is closed, the voltage across the capacitor increases exponentially.

$\mathrm{t}=$ time required for the
sample capacitor voltage to
settle to within one-fourth of
an LSB of the input voltage

Sampling time is often software programmable!

Resolution

> Resolution is determined by number of bits (in binary) to represent an analog input.
> Example of two quantization methods $(\mathrm{N}=3)$

Digital Result $=$ floor $\left(2^{3} \times \frac{\mathrm{V}}{\mathrm{V}_{\text {REF }}}\right)$
Max quantization error $=\Delta=V_{\text {REF }} / 2^{3}$

UNIVERSITYATALBANY

Digital Result $=$ round $\left(2^{3} \times \frac{V}{V_{\text {REF }}}\right)$
Max quantization error $= \pm 1 / 2 \Delta= \pm V_{\text {REF }} / 2^{4}$

$$
\operatorname{round}(\mathrm{x})=\text { floor }(\mathrm{x}+0.5)
$$

Quantization Error

$>$ For N -bit ADC, it is limited to $\pm 1 / 2 \Delta$
$>\Delta=$ is the step size of the converter.

> Example: for 12-bit ADC and input voltage range [0, 3V]

$$
\text { Max Quantization Error }=\frac{1}{2} \Delta=\frac{3 \mathrm{~V}}{2 \times 2^{12}}=0.367 \mathrm{mV}
$$

$>$ How to reduce error?

Aliasing

- Example 1:
- Consider a sinusoidal sound signal at $1 \mathrm{kHz}: x(t)=\cos (2000 \pi t)$
- Sampling interval T = 1/8000
- Samples $s(n)=f(x(n T))=\cos (\pi n / 4)$
- Example 2:
- Consider a sinusoidal sound signal at $9 \mathrm{kHz}: x^{\prime}(t)=\cos (18000 \pi t)$
- Sampling interval $T=1 / 8000$
- Samples $s^{\prime(n)}=f(x(n T))=\cos \left(\frac{9 \pi n}{4}\right)=\cos \left(\frac{\pi n}{4}+2 \pi n\right)=\cos \left(\frac{\pi n}{4}\right)=s(n)$
$>$ There are many distinct functions x that when sampled will yield the same signal s.

Minimum Sampling Rate

> In order to be able to reconstruct the analog input signal, the sampling rate should be at least twice the maximum frequency component contained in the input signal
> Example of two sine waves have the same sampling values. This is called aliasing. Nyquist-Shannon Sampling Theorem
> Antialiasing

- Pre-filtering: use analog hardware to filtering out high-frequency components and only sampling the low-frequency components. The high-frequency components are ignored.
- Post-filtering: Oversample continuous signal, then use software to filter out high-frequency components

ADC Conversion

> Input Range

- Unipolar ($0, \mathrm{~V}_{\text {Adcmax }}$)
- Bipolar ($\left.-\mathrm{V}_{\text {ADCMAX }},+\mathrm{V}_{\text {ADCMAX }}\right)$
- Clipping:
- If $\left|\mathrm{V}_{\text {IN }}\right|>\left|\mathrm{V}_{\text {ADCmAX }}\right|$, then $\left|\mathrm{V}_{\text {OUT }}\right|=\left|\mathrm{V}_{\text {ADCmax }}\right|$

Automatic Gain Control (AGC)

> Closed loop Feedback regulating circuit in an amplifier
> Maintains a suitable signal amplitude at its output, despite variation of the signal amplitude at the input
> The average or peak output signal level is used to dynamically adjust the gain of the amplifiers
> Example Use: Radio Receivers, Audio Recorders, Microphone

Power and RMS of Signal

$>$ Average Power of a signal

$$
P_{x}=\frac{1}{N} \sum_{n=0}^{N-1}\left|x_{n}\right|^{2}
$$

$>$ Crest Factor

$$
C=\frac{\left|x_{P E A K}\right|}{x_{\text {RMS }}}
$$

$>$ Square root of the arithmetic mean of the squares of the values

$$
x_{R M S}=\sqrt{\frac{1}{n}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)}
$$

> Crest Factor

- Sine Wave ~ 3.01dB, OFDM ~12dB
$>$ Crest Factor in dB

$$
C_{d B}=20 \log _{10} \frac{\left|x_{P E A K}\right|}{x_{R M S}}
$$

> Peak to Average Power Ratio (PAPR)

$$
\begin{aligned}
& P A P R=\frac{\left|x_{P E A K}\right|^{2}}{x_{R M S}^{2}} \\
& P A P R_{d B}=10 \log _{10} \frac{\left|x_{P E A K}\right|^{2}}{x_{R M S}^{2}}=C_{d B}
\end{aligned}
$$

Example Gain Control

>AD8338

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Digital-to-analog converter (DAC)

> Converts digital data into a voltage signal by a N -bit DAC

$$
D A C_{\text {output }}=V_{\text {ref }} \times \frac{\text { Digital Value }}{2^{N}}
$$

> For 12-bit DAC

$$
D A C_{\text {output }}=V_{\text {ref }} \times \frac{\text { Digital Value }}{4096}
$$

> Many applications:

- digital audio
- waveform generation
> Performance parameters
- speed
- resolution
- power dissipation
- glitches

DAC Implementations

- Pulse-width modulator (PWM)
- Binary-weighted resistor (We will use this one as an example)
- R-2R ladder (A special case of binary-weighted resistor)

Binary-weighted Resistor DAC

Digital Music

	0	1	2	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
C	16.352	32.703	65.406	130.813	261.626	523.251	1046.502	2093.005	4186.009
C\#	17.324	34.648	69.296	138.591	277.183	554.365	1108.731	2217.461	4434.922
D	18.354	36.708	73.416	146.832	293.665	587.330	1174.659	2349.318	4698.636
D\#	19.445	38.891	77.782	155.563	311.127	622.254	1244.508	2489.016	4978.032
E	20.602	41.203	82.407	164.814	329.628	659.255	1318.510	2637.020	5274.041
F	21.827	43.654	87.307	174.614	349.228	698.456	1396.913	2793.826	5587.652
F\#	23.125	46.249	92.499	184.997	369.994	739.989	1479.978	2959.955	5919.911
G	24.500	48.999	97.999	195.998	391.995	783.991	1567.982	3135.963	6271.927
G\#	25.957	51.913	103.826	207.652	415.305	830.609	1661.219	3322.438	6644.875
A	27.500	55.000	110.000	220.000	440.000	880.000	1760.000	3520.000	7040.000
A\#	29.135	58.270	116.541	233.082	466.164	932.328	1864.655	3729.310	7458.620
B	30.868	61.735	123.471	246.942	493.883	987.767	1975.533	3951.066	7902.133

Musical Instrument Digital Interface (MIDI) standard assigns the note A as pitch 69.

$$
p=69+12 \times \log _{2}\left(\frac{f}{440}\right)
$$

Digital Music

Generate Sine Wave

> No FPU available on the processor to compute sine functions
> Software FP to compute sine is slow
> Solution: Table Lookup

- Compute sine values and store in table as fixpoint format
- Look up the table for result
- Linear interpolation if necessary

Digital Music: Attack, Decay, Sustain, Release (ADSR)

> Amplitude Modulation of Tones (modulate music amplitude)

Implemented by a simple digital filter:

$$
\operatorname{ADSR}(\mathrm{n})=\mathrm{g} \times \overrightarrow{\operatorname{ADSR}}+(1-\mathrm{g}) \times \operatorname{ADSR}(\mathrm{n}-1)
$$

where $\overrightarrow{\mathrm{ADSR}}$ is the target modulated amplitude value, g is the gain parameter.

Digital Music: ADSR Amplitude Modulation

