
1

Cyber-Physical Systems

Communication
ICEN 553/453– Fall 2018
Prof. Dola Saha

2

Why do we need Communication?
§ Connect different systems together
o Two embedded systems
o A desktop and an embedded system
§ Connect different chips together in the same embedded system
o MCU to peripheral
o MCU to MCU

3

What determines how much we can transmit?

Ø Shannon’s noisy channel coding theorem
§ Says you can achieve error-free communicate at any

Ø Rate up to the channel capacity, and can’t do any better
§ C: channel capacity, in bits / s
§ W: bandwidth amount of frequency “real estate”, in Hz (cycles / s)
§ S: Signal power
§ N: Noise power

! = #$%&'
(+ *
*

4

Communication Methods
Ø Different physical layers methods: wires, radio frequency (RF), optical (IR)
Ø Different encoding schemes: amplitude, frequency, and pulse-width

modulation

5

Dimensions to consider
Ø bandwidth – number of wires – serial/parallel
Ø speed – bits/bytes/words per second
Ø timing methodology – synchronous or asynchronous
Ø number of destinations/sources
Ø arbitration scheme – daisy-chain, centralized, distributed
Ø protocols – provide some guarantees as to correct

communication

6

Parallel and Serial Bus

7

Parallel and Serial Communication
Ø Serial
§ Single wire or channel to transmit

information one bit at a time
§ Requires synchronization between

sender and receiver
§ Sometimes includes extra wires for

clock and/or handshaking
§ Good for inexpensive connections

(e.g.,terminals)
§ Good for long-distance connections

(e.g.,LANs)

Ø Parallel
§ Multiple wires to transmit information

one byte or word at a time
§ Good for high-bandwidth requirements

(CPU to disk)
§ Crosstalk creates interference between

multiple wires
§ Length of link increases crosstalk
§ More expensive

wiring/connectors/current requirements

8

Parallel vs. Serial Digital Interfaces
Ø Parallel (one wire per bit)
§ ATA: Advanced Technology Attachment

§ PCI: Peripheral Component Interface
§ SCSI: Small Computer System Interface

§ Serial (one wire per direction)
§ RS-232

§ SPI: Serial Peripheral Interface bus
§ I2C: Inter-Integrated Circuit

§ USB: Universal Serial Bus

§ SATA: Serial ATA

§ Ethernet, IrDA, Firewire, Bluetooth, DVI, HDMI

Ø Mixed (one or more “lanes”)
§ PCIe: PCI Express

PCI

SCSI

USB

RS-232

9

Parallel vs Serial Digital Interfaces
Ø Parallel connectors have been replaced by Serial
§ Significant crosstalk/inter-wire interference for parallel connectors
§ Maintaining synchrony across the multiple wires
§ Serial connection speeds can be increased by increasing transmission

freq, but parallel crosstalk gets worse at increased freq

10

Serial Peripheral Interface (SPI)
Ø Synchronous full-duplex communication

Ø Can have multiple slave devices
Ø No flow control or acknowledgment

Ø Slave cannot communicate with slave directly.

SCLK: serial clock

SS: slave select (active low)
MOSI: master out slave in

MISO: master in slave out

Serial Peripheral Interface
http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/
SPI_single_slave.svg/350px-SPI_single_slave.svg.png

11

SPI – Point-to-point and Daisy Chain

SCLK: serial clock

SS: slave select (active low)
MOSI: master out slave in

MISO: master in slave out

Pictures: https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/

Point-to-point Daisy Chain

12

Data Exchange

Ø Master has to provide clock to slave
Ø Synchronous exchange: for each clock pulse, a bit is shifted out and

another bit is shifted in at the same time. This process stops when all
bits are swapped.

Ø Only master can start the data transfer

13

Clock

14

Clock Phase and Polarity
Ø CPHA (Clock PHase)
§ = 0 or =1, determines when data goes on bus relative to clock

Ø CPOL (Clock POLarity)
§ =0 clock idles low between transfers
§ =1 clock idles high between transfers

Ø CPOL = 0 ⟶	SCLK is pushed to low during idle. Otherwise, pulled to high during idle.
Ø CPHA = 0 ⟶	the first clock transition (either rising or falling) is the first data capture edge.

Otherwise, the second clock transition is the first data capture edge.

Ø Combination of CPOL and CPHA determines the clock edge for transmitting and receiving.

Mode 0 Mode 1

Mode 2 Mode 3

Clock Phase (CPHA)

C
lo

ck
 P

ol
ar

ity
 (C

PO
L)

CPHA = 0

C
PO

L
=

0

CPHA = 1

C
PO

L
=

1

Sampling
Edge

Sampling
Edge

Toggling
Edge

Toggling
Edge

15

Clock Phase and Polarity

SSN

SCLK
CPOL = 0
CPHA = 0

SCLK
CPOL = 0
CPHA = 1

SCLK
CPOL = 1
CPHA = 0

SCLK
CPOL = 1
CPHA = 1

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

Sampling
Edge

bout[2]bout[0] bout[1] bout[3] bout[4] bout[5] bout[6] bout[7]

Mode 0 Mode 1

Mode 2 Mode 3

Clock Phase (CPHA)

C
lo

ck
 P

ol
ar

ity
 (C

PO
L)

CPHA = 0

C
PO

L
=

0

CPHA = 1

C
PO

L
=

1

Sampling
Edge

Sampling
Edge

Toggling
Edge

Toggling
Edge

16

SPI: Pros and Cons
Ø Pros
§ Simplest way to connect 1

peripheral to a micro
§ Fast (10s of Mbits/s, not on MSP)

because all lines actively driven,
unlike I2C

§ Clock does not need to be
precise

§ Nice for connecting 1 slave

Ø Cons
§ No built-in acknowledgement of

data
§ Not very good for multiple slaves
§ Requires 4 wires
§ 3 wire variants exist...some get

rid of full duplex and share a
data line, some get rid of slave
select

17

Analog to Digital Converter
Ø DGND : digital ground pin for the chip
Ø CS : chip select.
Ø DIN : data in from the MC itself.
Ø DOUT: data out pin.
Ø CLK: clock pin.
Ø AGND: analog ground and obviously connects to ground.
Ø VREF: analog reference voltage. You can change this if you

want to change the scale. You probably want to keep it the
same so keep this as 3.3v.

Ø VDD: positive power pin for the chip.

18

MCP 3008

19

Configuration Bits
Ø Single or Differential
Ø D2, D1, D0

20

Communication

21

Analog to Digital Converter

RPi 3.3V
RPi 3.3V
RPi GND
RPi SClk
RPi MISO
RPi MOSI
RPi CE0
RPi GND

22

Connect a Sensor

23

Channel Select

Ø The device will begin to sample the analog input on the fourth rising edge of the clock after the
start bit has been received. The sample period will end on the falling edge of the fifth clock
following the start bit.

24

Enable SPI in Raspberry PI
Ø sudo raspi-config
Ø 5 Interfacing Options
Ø P4 SPI
Ø Would you like the SPI interface to be enabled?
§ Select Yes

Ø The SPI interface is enabled
§ Select OK

Ø Finish

25

Has SPI been really enabled?
Ø sudo ls /dev/spi*
Ø /dev/spidev0.0 /dev/spidev0.1

26

Install Adafruit MCP 3008 Python Library
Ø sudo apt-get update
Ø sudo apt-get install build-essential python-dev python-smbus git
Ø cd ~
Ø git clone https://github.com/adafruit/Adafruit_Python_MCP3008.git
Ø cd Adafruit_Python_MCP3008
Ø sudo python setup.py install

27

Photocell
Ø Measure Voltage drop depending on Lux
Ø Resistance range: 200KΩ (dark) to 10KΩ (10 lux brightness)
Ø Sensitivity range: Respond to light between 400nm (violet)

and 600nm (orange) wavelengths, peaking at about 520nm
(green).

Ø Power supply: Up to 100V
§ uses less than 1mA of current on average

28

Connect Photocell

29

Run existing code
Ø cd ~/Adafruit_Python_MCP3008/examples/
Ø Change the simpletest.py code to enable Hardware SPI

and disable Software SPI
Ø Then run the simpletest.py

30

Output of simpletest.py

Ø Why are there values in unused channels?
Ø What can be the range of values in the used channel?

31

Connect Temperature Sensor

32

Kernel and User Space

ioctl()

33

SPI Bus on Linux
Ø lsmod | grep spi

Ø modprobe spidev

Ø modprobe spi_bcm2835

Ø dmesg | grep spi

34

SPI Using User->Kernel Modules
Ø ioctl
§ /usr/include/asm-generic/ioctl.h

Ø spidev
§ /usr/include/linux/spi/spidev.h

Ø Kernel Module
§ https://github.com/raspberrypi/linux/blob/rpi-3.12.y/drivers/spi/spi-

bcm2835.c

35

ioctl() – Input/Output Control
Ø int ioctl(int fd, unsigned long request, ...);
Ø The ioctl() system call manipulates the underlying device parameters of

special files.
Ø Input Arguments
§ fd – File Descriptor
§ request – Device dependent request code
§ Third Argument – Integer value of a pointer to data for transfer

Ø Return
§ 0 on success.
§ -1 on error.

36

spi_ioc_transfer structure

37

SPI Dev Interface
Ø https://www.kernel.org/doc/Documentation/spi/spidev

Ø /dev/spidevB.C (B=bus, C=slave number).
§ On RPi it is /dev/spidev0.0

Ø To open the device:
§ fd=open("/dev/spidev0.0",O_RDWR);

38

SPI Dev Interface
Ø To set the mode:
§ int mode=SPI_MODE_0;
§ result = ioctl(spi_fd , SPI_IOC_WR_MODE , &mode);

Ø To set the bit order:
§ int lsb_mode =0;
§ result = ioctl(spi_fd, SPI_IOC_WR_LSB_FIRST, &lsb_mode);

39

SPI Dev Interface
Ø To transfer:
§ ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);

Ø To close:
§ close(fd);

40

MCP 3008 Data Transfer

