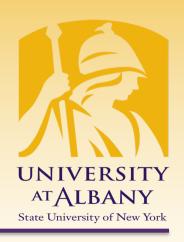
Cyber-Physical Systems



1

Discrete Dynamics

ICEN 553/453 – Fall 2018 Prof. Dola Saha

- Discrete = "individually separate / distinct"
- A discrete system is one that operates in a sequence of discrete steps or has signals taking discrete values.
- > It is said to have **discrete dynamics**.

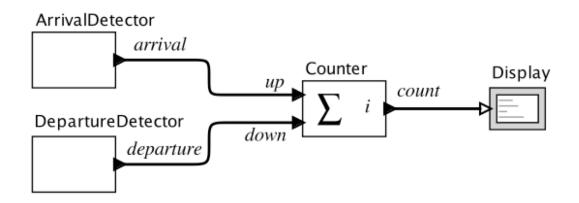
A discrete event occurs at an instant of time rather than over time.

Discrete Systems: Example Design Problem

Count the number of cars that are present in a parking garage by sensing cars enter and leave the garage. Show this count on a display.

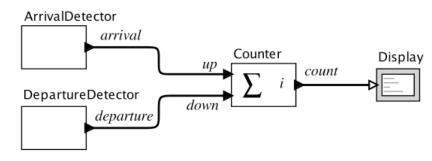
Discrete Systems

Example: count the number of cars in a parking garage by sensing those that enter and leave:



Discrete Systems

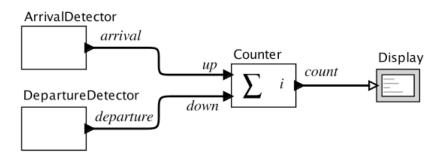
Example: count the number of cars that enter and leave a parking garage:



> absent: no event at that time ; present: event at that time

Discrete Systems

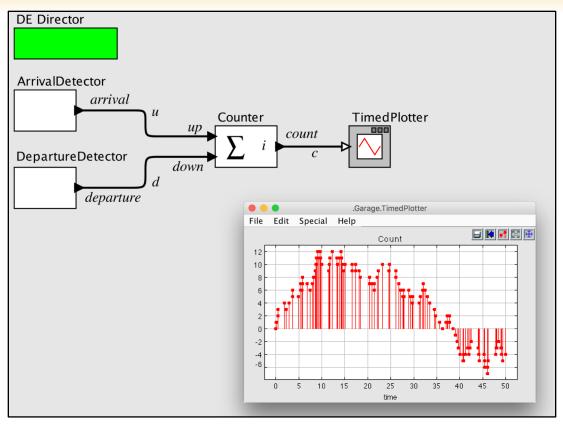
Example: count the number of cars that enter and leave a parking garage:



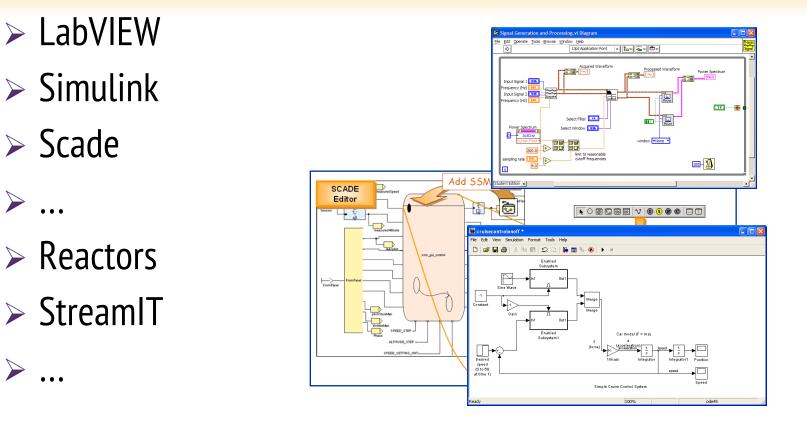
> Pure signal: $up: \mathbb{R} \to \{absent, present\}$

▷ **Discrete actor:** *Counter*: $(\mathbb{R} \to \{absent, present\})^P \to (\mathbb{R} \to \{absent\} \cup \mathbb{N})$ $P = \{up, down\}$

Demonstration of Ptolemy II Model ("Program")



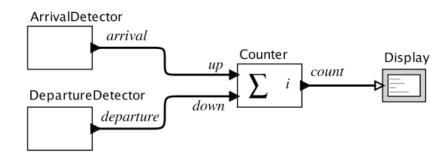
Actor Modeling Languages / Frameworks



For any $t \in \mathbb{R}$ where $up(t) \neq absent$ or $down(t) \neq absent$ the Counter **reacts**. It produces an output value in \mathbb{N} and changes its internal **state**.

State: condition of the system at a particular point in time

Encodes everything about the past that influences the system's reaction to current input



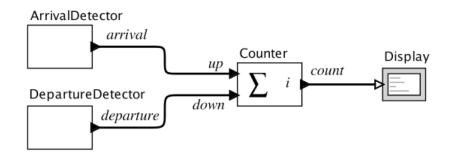
Inputs and Outputs at a Reaction

For $t \in \mathbb{R}$ the inputs are in a set

$$Inputs = (\{up, down\} \rightarrow \{absent, present\})$$

and the outputs are in a set

$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}) ,$$



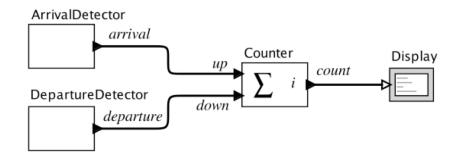
What are some scenarios that the given parking garage (interface) design does not handle well?

For $t \in \mathbb{R}$ the inputs are in a set

Inputs = ({up, down} \rightarrow {absent, present})

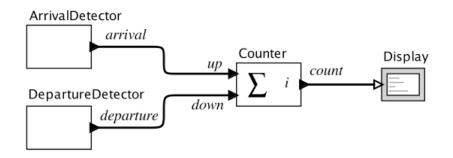
and the outputs are in a set

$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}),$$

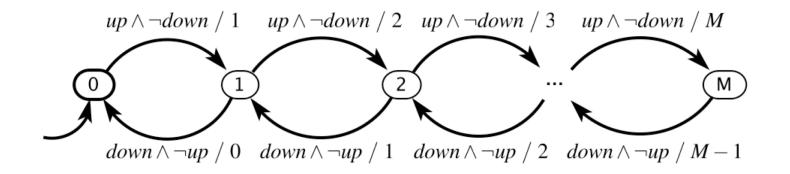


A practical parking garage has a finite number *M* of spaces, so the state space for the counter is

States =
$$\{0, 1, 2, \cdots, M\}$$
.



Garage Counter Finite State Machine (FSM)



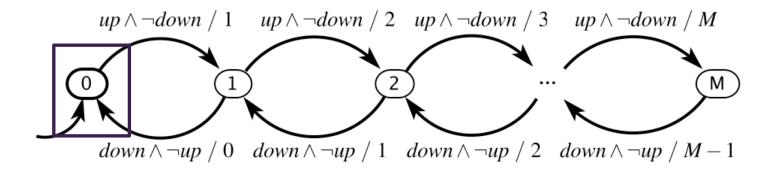
Guard $g \subseteq Inputs$ is specified using the shorthand

 $up \land \neg down$

which means

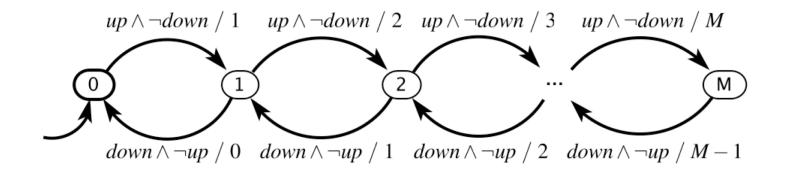
Inputs(up) = present, Inputs(down) = absent

Garage Counter Finite State Machine (FSM)



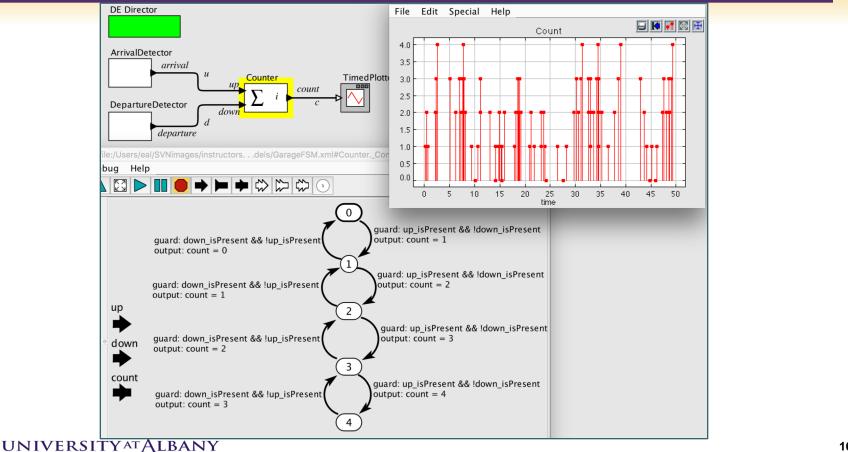
Initial state

Garage Counter Finite State Machine (FSM)



Output

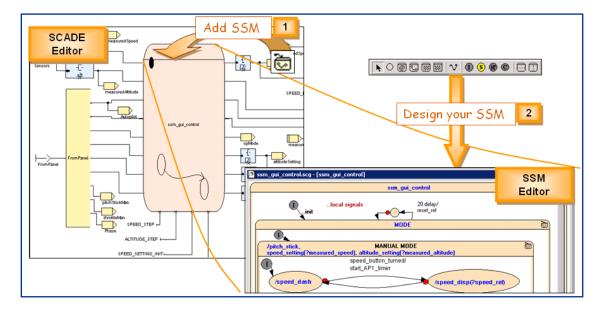
Ptolemy II Model



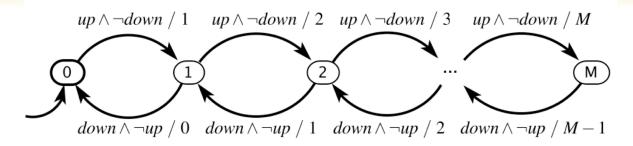
FSM Modeling Languages / Frameworks

- LabVIEW Statecharts
- Simulink Stateflow
- Scade

. . .



Garage Counter Mathematical Model

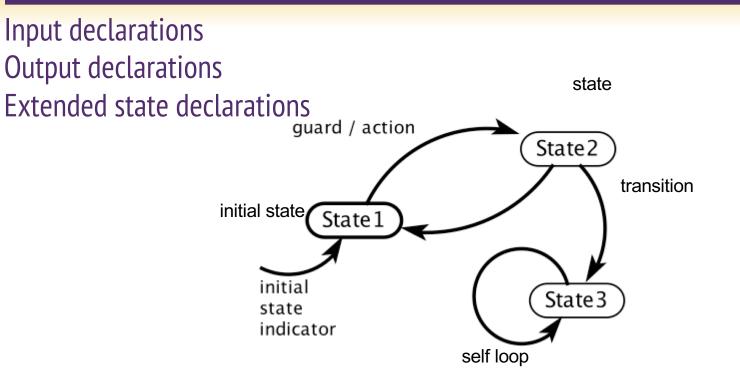


Formally: (*States*, *Inputs*, *Outputs*, *update*, *initialState*), where

- *States* = $\{0, 1, \dots, M\}$
- $Inputs = (\{up, down\} \rightarrow \{absent, present\}$
- $Outputs = ({count} \rightarrow {absent} \cup \mathbb{N})$
- update : States × Inputs → States × Outputs

The picture above defines the update function.

FSM Notation



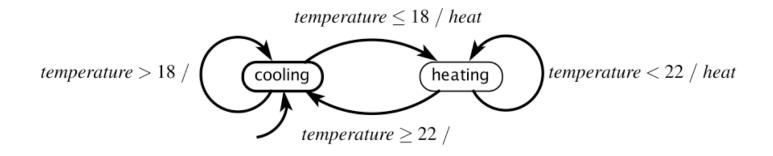
Examples of Guards for Pure Signals

trueTransition is always enabled. p_1 Transition is enabled if p_1 is present. $\neg p_1$ Transition is enabled if p_1 is absent. $p_1 \land p_2$ Transition is enabled if both p_1 and p_2 are present. $p_1 \lor p_2$ Transition is enabled if either p_1 or p_2 is present. $p_1 \land \neg p_2$ Transition is enabled if p_1 is present and p_2 is absent.

Guards for Signals with Numerical Values

 p_3 Transition is enabled if p_3 is present (not absent). $p_3 = 1$ Transition is enabled if p_3 is present and has value 1. $p_3 = 1 \land p_1$ Transition is enabled if p_3 has value 1 and p_1 is present. $p_3 > 5$ Transition is enabled if p_3 is present with value greater than 5.

Example of *Modal* Model: Thermostat

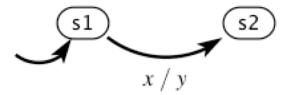


When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs when any input is present. Then the below transition will be taken whenever the current state is s1 and x is present.

➤ This is an *event-triggered model*.

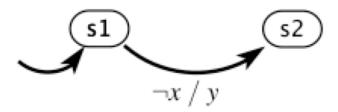
input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$



When does a reaction occur?

Suppose x and y are discrete and pure signals. When does the transition occur?

input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$



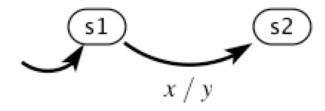
Answer: when the *environment* triggers a reaction and x is absent. If this is a (complete) event-triggered model, then the transition will never be taken because the reaction will only occur when x is present!

When does a reaction occur?

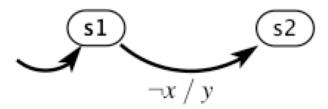
Suppose all inputs are discrete and a reaction occurs on the tick of an external clock.

> This is a *time-triggered model*.

input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$

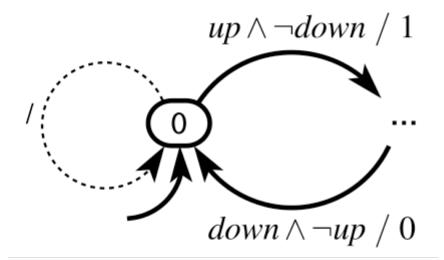


input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$



More Notation: Default Transitions

A default transition is enabled if it either has no guard or the guard evaluates to true. When is the below default transition enabled?



Default Transitions

Example: Traffic Light Controller

