
1

Cyber-Physical Systems

Memory Architecture
ICEN 553/453– Fall 2018
Prof. Dola Saha



2

Role of Memory in Embedded Systems
ØTraditional roles: Storage and Communication for Programs
ØCommunication with Sensors and Actuators
ØOften much more constrained than in general-purpose 
computing
§Size, power, reliability, etc.

ØCan be important for programmers to understand these 
constraints



3

Memory Architecture Issues in Embedded System
Ø Types of memory
§ volatile vs. non-volatile, SRAM vs. DRAM

Ø Memory maps
§ Harvard architecture
§ Memory-mapped I/O

Ø Memory organization
§ statically allocated
§ stacks
§ heaps (allocation, fragmentation, garbage collection)

Ø The memory model of C



4

Memory Architecture Issues in Embedded System
Ø The memory model of C
Ø Memory hierarchies
§ scratchpads, caches, virtual memory

Ø Memory protection
§ segmented spaces



5

Non-volatile Memory 

Ø preserves the content when power is off
§ EPROM: erasable programmable read only memory
Ø Erase by exposing the chip to strong UV light
§ EEPROM: electrically erasable programmable read-only memory
§ Flash memory
Ø Erased a “block” at a time, Limited number of program/erase cycles
Ø Controllers can get quite complex
§ Disk drives
Ø Not as well suited for embedded systems



6

Volatile Memory
Ø SRAM: static random-access memory
§ Fast, deterministic access time

§ But more power hungry and less dense than DRAM

§ Used for caches, scratchpads, and small embedded memories

Ø DRAM: dynamic random-access memory
§ Slower than SRAM

§ Access time depends on the sequence of addresses

§ Denser than SRAM (higher capacity)

§ Requires periodic refresh (typically every 64msec)
§ Typically used for main memory

Ø Boot loader
§ On power up, transfers data from non-volatile to volatile memory.



7

Example Memory Map 
Ø ARM Cortex M3
ØDefines the mapping of 
addresses to physical 
memory.

ØWhy do this?



8

Raspberry Pi
Ø Memory Map



9

AVR
ØThe AVR is an 8-bit single chip microcontroller first developed 
by Atmel in 1997. The AVR was one of the first microcontroller 
families to use on-chip flash memory for program storage. It has 
a modified Harvard architecture.1

ØAVR was conceived by two students at the Norwegian Institute 
of Technology (NTH) Alf-Egil Bogen and Vegard Wollan, who 
approached Atmel in Silicon Valley to produce it.
Ø1 A Harvard architecture uses separate memory spaces for program and data. It originated 
with the Harvard Mark I relay-based computer (used during World War II), which stored the 
program on punched tape (24 bits wide) and the data in electro-mechanical counters.



10

A Use of AVR: Arduino
ØArduino is a family of open-source hardware boards built 
around either 8-bit AVR processors or 32-bit ARM processors.

ØExample:
Atmel AVR 
Atmega328 
28-pin DIP on an 
Arduino Duemilanove
board



11

ATMega 168: An 8-bit microcontroller with 16-bit addresses

AVR microcontroller 
architecture used in iRobot 
command module.

Why is it called an 8-bit 
microcontroller?



12

Questions?
1. What is the difference between an 8-bit microcontroller 

and a 32-bit microcontroller?

2. Why use volatile memory? Why not always use non-
volatile memory?



13

Memory Organization
Ø Statically-allocated memory
§ Compiler chooses the address at which to store a variable.

Ø Stack
§ Dynamically allocated memory with a Last-in, First-out (LIFO) strategy

Ø Heap
§ Dynamically allocated memory



14

Statically-Allocated Memory in C
char x;
int main(void) {

x = 0x20;
…

}

Compiler chooses what address to use for x, and the 
variable is accessible across procedures. The variable’s 
lifetime is the total duration of the program execution.



15

Statically-Allocated Memory with Limited Scope
void foo(void) {

static char x;
x = 0x20;
…

}

Compiler chooses what address to use for x, but the 
variable is meant to be accessible only in foo(). The 
variable’s lifetime is the total duration of the program 
execution (values persist across calls to foo()).



16

Variables on the Stack
void foo(void) {

char x;
x = 0x20;
…

}

When the procedure is called, x is assigned an address on 
the stack (by decrementing the stack pointer). When the 
procedure returns, the memory is freed (by incrementing 
the stack pointer). 



17

What is meant by the following C code?

char x;
void foo(void) {
x = 0x20;
…

}

char *x;
void foo(void) {
x = 0x20;
…

}

char *x, y;
void foo(void) {
x = 0x20;
y = *x;
…

}



18

Dynamically-Allocated Memory
ØAn operating system typically offers a way to dynamically 
allocate memory on a “heap”.
ØMemory management (malloc() and free()) can lead to many 
problems with embedded systems:
¢ Memory leaks (allocated memory is never freed)
¢ Memory fragmentation (allocatable pieces get smaller)

ØAutomatic techniques (“garbage collection”) often require 
stopping everything and reorganizing the allocated memory. This 
is deadly for real-time programs.



19

Memory Hierarchies
Ø Memory hierarchy
§ Cache: 
o A subset of memory addresses is mapped to SRAM
o Accessing an address not in SRAM results in cache miss
o A miss is handled by copying contents of DRAM to SRAM

§ Scratchpad:
o SRAM and DRAM occupy disjoint regions of memory space
o Software manages what is stored where

Ø Segmentation
o Logical addresses are mapped to a subset of physical addresses
o Permissions regulate which tasks can access which memory


