Cyber-Physical Systems

UNIVERSITY

Memory Architecture TALBANY,

ICEN 553/453- Fall 2018
Prof. Dola Saha

UNVR TY TALBANY

Role of Memory in Embedded Systems

> Traditional roles: Storage and Communication for Programs
»Communication with Sensors and Actuators

»0ften much more constrained than in general-purpose
computing

=Size, power, reliability, etc.

»>(an be important for programmers to understand these
constraints

UNIVERSITYATALBANY
State University of New York

Memory Architecture Issues in Embedded System

> Types of memory

= volatile vs. non-volatile, SRAM vs. DRAM
> Memory maps

= Harvard architecture

= Memory-mapped I/0
> Memory organization

= statically allocated

= stacks
'Hg&%l?%\%LQg&glgﬂ?fragmentatlon, garbage collection)

Memory Architecture Issues in Embedded System

> The memory model of C

> Memory hierarchies
= scratchpads, caches, virtual memory

> Memory protection
u segmented Spaces

UNIVERSITYATALBANY
State University of New York

Non-volatile Memory

> preserves the content when power is off
= EPROM: erasable programmable read only memory
> Erase by exposing the chip to strong UV light

= EEPROM: electrically erasable programmable read-only memory
= Flash memory

» Erased a “block” at a time, Limited number of program/erase cycles
> Controllers can get quite complex

= Disk drives

> Not as well suited for embedded systems

UNIVERSITYATALBANY
State University of New York

Volatile Memory

> SRAM: static random-access memory

= Fast, deterministic access time
= But more power hungry and less dense than DRAM
= Used for caches, scratchpads, and small embedded memories

> DRAM: dynamic random-access memory

= Slower than SRAM
= Access time depends on the sequence of addresses
= Denser than SRAM (higher capacity)

= Requires periodic refresh (typically every 64msec)
= Typically used for main memory

> Boot loader

= On power up, transfers data from non-volatile to volatile memory.

UNIVERSITYATALBANY

e University of New York

Example Memory Map

> ARM Cortex M3

»>Defines the mapping of

addresses to physical
memory.

>Why do this?

UNIVERSITYATALBANY
State University of New York

peripherals

private peripheral bus

external devices
(memory mapped)

data memory
(DRAM)

peripherals
(memory-mapped registers)

data memory
(SRAM)

program memory
(flash)

OXFFFFFFFF

[

O

L

0xE0000000 o
OxDFFFFFFF

[aa

O

<
0xA0000000
OxX9FFFFFFFE

e e e e e) ey)
1.0GB

0x60000000
OxSFFFFFFF
[
O
n
0x40000000 o
Ox3FFFFFFF
[
O
Lﬂ
0x20000000 o
OX1FFFFFFFEF
[
O
Lﬂ
o

0x00000000

Register Offset MSB 32-bits for each register

R b P [] Offset is from the virtual address 0x2F00 0000 on the RPi 2/3, and 0x2 0000000 on all other RPi models,
p GPFSELO 0000 X FSEL9S FSEL8 FSEL7 FSEL6 FSELS FSEL4 FSEL3 FSEL2 FSEL1 FSELO
GPFSEL1 0004 X FSEL1S FSEL18 | FSEL17 = FSEL16 FSEL1S FSEL14 FSEL13 FSEL12 FSEL11 FSEL10
GPFSEL2 0008 X FSEL29 FSEL28 FSEL27 FSEL26 FSEL25 FSEL24 FSEL23 FSEL22 FSEL21 FSEL20
GPFSEL3 000C X FSEL39 FSEL38 FSEL37 FSEL36 FSEL35 FSEL34 FSEL33 FSEL32 FSEL31 FSEL30
> e I I l O ry a p GPFSEL4 0010 O FSEL49 FSELA8 FSELA7 FSEL4A6 FSELAS FSELS4 FSEL43 FSEL42 FSEL41 FSEL40
GPFSELS 0014 [32-12] X FSELS3 FSEL52 FSEL51 FSELSO
GPSETO 001C [31-0] mapped to GP1031 to GPIO0 (1 = set GPI0)(0 = no effect)
GPSET1 0020 [31-22] X [21-0] mapped to GPIO53 to GP1032 (1 = set GPIO)(0 = no effect)
GPCLRO 0028 [31-0] mapped to GP1031 to GPIOO (1 = clear GPIO){0 = no effect)
GPCLR1 002C [31-22] X [21-0] mapped to GPI053 to GPI1032 (1 = clear GP10)(0 = no effect)
GPLVLO 0034 [31-0) mapped to GPIO31 to GPIOO0 (1 = level is high)(0 = level is low)
GPLVL1 0038 [31-22] X [21-0) mapped to GPIO53 to GPI032 (1 = level is high){0 = level is low)
GPPUD | 0094 31-2] X [1-0]
GPPUDCLKO 0098 [31-0] mapped to GPI031 to GPIOO (1 = assert clock)(0 = no effect)
GPPUDCLK1 009C [31-22] X [21-0] mapped to GP1053 to GPIO32 (1 = assert clock){0 = no effect)
—— P G ¢
000 input 'Example: Set GPIO17 to be an output and setithigh. 1 g
T Solution: Write bits 001 to FSEL17, which is bits 21, 22, and 23 : LAl
100 ALTO of the GPFSEL1 register to set the pin up as an output, . 01 pull-down
Then write a 1 to bit 17 of the GPSETO register to set the output high. | 10 pull-up
101 ALT1 .,,f_,,,,,,__,,,v\l fffffffffffffffff 4 1 X
L L GPFSEL1 FSEL17
——— (31] _(30] 20 (231 1221 (2111 f20) o PPt
011 ALT4 ? 7 ? J its as this will affec
L s other GPIO select modes!
UNIVERSITYATALBANY L S X[X ?10/0[1]: L.

State University of New York Don’t care

AVR

»>The AVR is an 8-bit single chip microcontroller first deve&)ped'
by Atmel in 1997/. The AVR was one of the first microcontroller

families to use on-chip flash memory for program storage. It has
a modified Harvard architecture.!

»>AVR was conceived by two students at the Norwegian Institute
of Technology (NTH) Alf-Egil Bogen and Vegard Wollan, who
approached Atmel in Silicon Valley to produce it.

>

UNIVERSITYATALBANY 9
State University of New York

A Use of AVR: Arduino

>Arduino is a family of open-source hardware boards built
around either 8-bit AVR processors or 32-bit ARM processors.

MADE IN 6\
ITALY mA

>Example:

Atmel AVR
Atmega328

28-pin DIP on an
Arduino Duemilanove
board

UNIVERSITYATALBANY
State University of New York

g}g POMER ﬁNﬁLDG IN
@ M5V Gnd Vin @ 5

ATMega 168: An 8-bit microcontroller with 16-bit addresses

Data Memory

32 Registers

64 I/O Registers
160 Ext I/0O Reg.

Internal SRAM
(512/1024/1024 x 8)

Data Bus 8-bit

<

0x0000 - 0x001F
0x0020 - 0x005F
0x0060 - 0x00FF

0x0100

4

0x02FF/0x04FF/0x04FF

Program Status
Pchlgfz?m Counter [T and Control |~
Memory
Interrupt
. » 32x8 <> Unit
Instruction General P
Reqister Purpose - SPI
Registrers “«> Unit
y
Instruction Watchd
Decoder - 4 A 4 < T|an$er o
o) % N
‘»
l 8 = ALU P Analog
Control Lines 5 p Comparator
=
8 S
- = <> /0 Module1
Data <« /0 Module 2
» sSrRam [* He
<«—>»| /O Module n
EEPROM ‘
I/O Lines <

AVR microcontroller
architecture used in iRobot
command module.

Why is it called an 8-bit
microcontroller?

11

Questions?

1. What is the difference between an 8-bit microcontroller
and a 32-bit microcontroller?

2. Why use volatile memory? Why not always use non-
volatile memory?

UNIVERSITYATALBANY
State University of New York

12

Memory Organization

> Statically-allocated memory
= Compiler chooses the address at which to store a variable.

> Stack
= Dynamically allocated memory with a Last-in, First-out (LIFO) strategy

> Heap
= Dynamically allocated memory

UNIVERSITYATALBANY
State University of New York

13

Statically-Allocated Memory in C

char x;
int main (void) {

x = 0x20;

Compiler chooses what address to use for x, and the
variable is accessible across procedures. The variable’s
lifetime is the total duration of the program execution.

UNIVERSITYATALBANY
State University of New York

14

Statically-Allocated Memory with Limited Scope

volid foo (void) {
static char x;
x = 0x20;

}
Compiler chooses what address to use for x, but the

variable is meant to be accessible only in foo(). The
variable’s lifetime is the total duration of the program
execution (values persist across calls to foo()).

UNIVERSITYATALBANY
State University of New York

15

Variables on the Stack

volid foo (void) {
char x;
x = 0x20;

}

When the procedure is called, x is assigned an address on
the stack (by decrementing the stack pointer). When the
procedure returns, the memory is freed (by incrementing
the stack pointer).

UNIVERSITYATALBANY
State University of New York

16

What is meant by the following C code?

char x;
volid foo (void) {
x = 0x20;

char *x;
void foo (void)
x = 0x20;

{

UNIVERSITYATALBANY
State University of New York

char *x, vy;
volid foo (void)
x = 0x20;
y = *%;

17

Dynamically-Allocated Memory

>An operating system typically offers a way to dynamically
allocate memory on a “heap”.

»Memory management (malloc() and free()) can lead to many
problems with embedded systems:

O Memory leaks (allocated memory is never freed)

O Memory fragmentation (allocatable pieces get smaller)

»Automatic techniques (“garbage collection”) often require
stopping everything and reorganizing the allocated memory. This
Is deadly for real-time programs.

UNIVERSITYATALBANY 18
State University of New York

Memory Hierarchies

> Memory hierarchy
= (ache:
o A subset of memory addresses is mapped to SRAM
o Accessing an address not in SRAM results in cache miss
o A miss is handled by copying contents of DRAM to SRAM
= Scratchpad:
o SRAM and DRAM occupy disjoint regions of memory space
o Software manages what is stored where

> Segmentation

o Logical addresses are mapped to a subset of physical addresses
o Permissions regulate which tasks can access which memory

UNIVERSITYATALBANY
State University of New York

19

