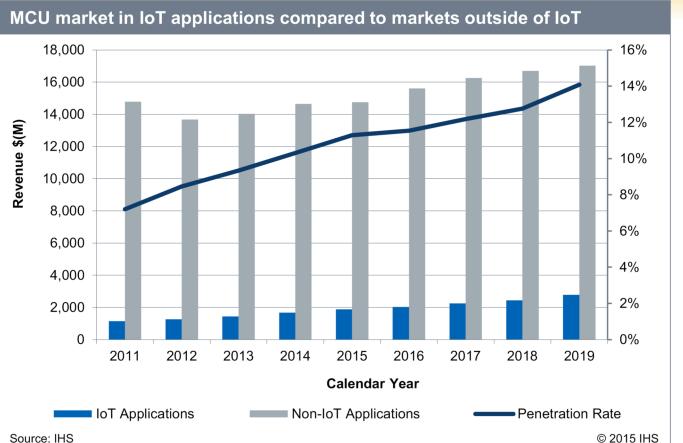
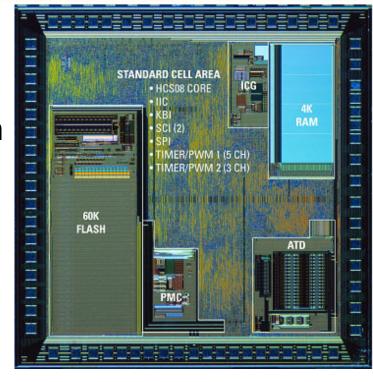

Cyber-Physical Systems


Embedded Architecture

ICEN 553/453 – Fall 2018 Prof. Dola Saha

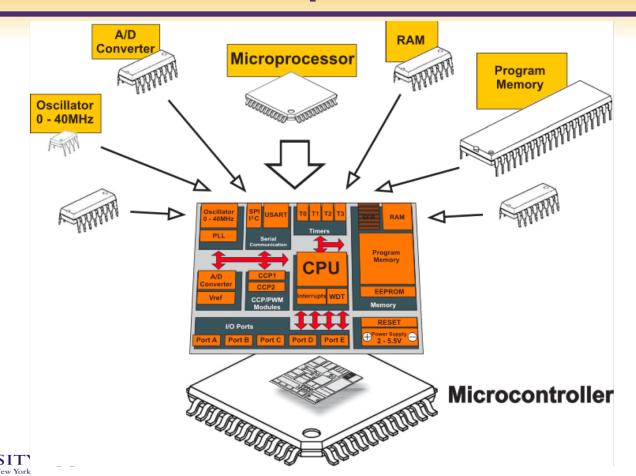

Introduction to Microcontrollers

Introduction to Microcontrollers

- A microcontroller (MCU) is a small computer on a single integrated circuit consisting of a relatively simple central processing unit (CPU) combined with peripheral devices such as memories, I/O devices, and timers.
 - By some accounts, more than half of all CPUs sold worldwide are microcontrollers.
 - Such a claim is hard to substantiate because the difference between microcontrollers and generalpurpose processors is indistinct.

Microcontrollers

- An Embedded Computer System on a Chip
 - A CPU
 - Memory (Volatile and Non-Volatile)
 - Timers
 - I/O Devices
- > Typically intended for limited energy usage
 - Low power when operating plus sleep modes
- > Where might you use a microcontroller?

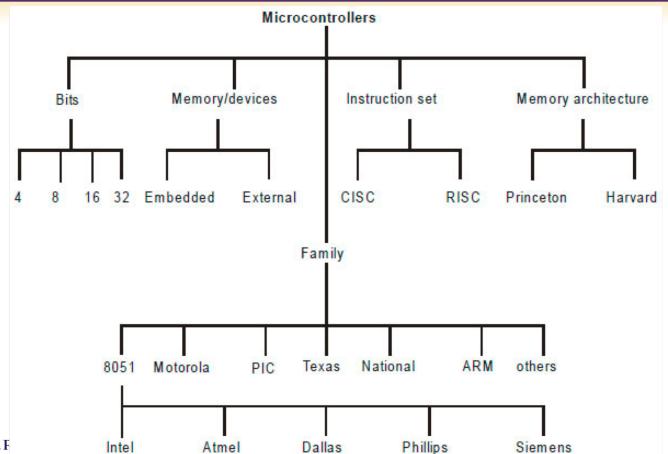

What is Control?

- > Sequencing operations
 - Turning switches on and off
- Adjusting continuously (or at least finely) variable quantities to influence a process

Microcontroller vs Microprocessor

- ➤ A microcontroller is a small computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals.
- ➤ A microprocessor incorporates the functions of a computer's central processing unit (CPU) on a single integrated circuit.

Microcontroller vs Microprocessor


Types of Processors

- In general-purpose computing, the variety of instruction set architectures today is limited, with the Intel x86 architecture overwhelmingly dominating all.
- ➤ There is no such dominance in embedded computing. On the contrary, the *variety of processors can be daunting* to a system designer.
- > Do you want same microprocessor for your watch, autonomous vehicle, industrial sensor?

How to choose micro-processors/controllers?

- > Things that matter
 - Peripherals
 - Concurrency & Timing
 - Clock Rates
 - Memory sizes (SRAM & flash)
 - Package sizes

Types of Microcontrollers

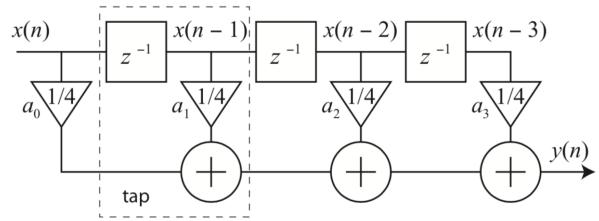
DSP Processors

- Processors designed specifically to support numerically intensive signal processing applications are called DSP processors, or DSPs (digital signal processors).
- Signal Processing Applications: interactive games; radar, sonar, and LIDAR (light detection and ranging) imaging systems; video analytics (the extraction of information from video, for example for surveillance); driver-assist systems for cars; medical electronics; and scientific instrumentation.

A Common Signal Processing Algorithm

- > finite impulse response (FIR) filtering
- > N is the length of the filter
- → a_i are tap values
- > x(n) is the input

$$y(n) = \sum_{i=0}^{N-1} a_i x(n-i)$$


FIR Filter Formula

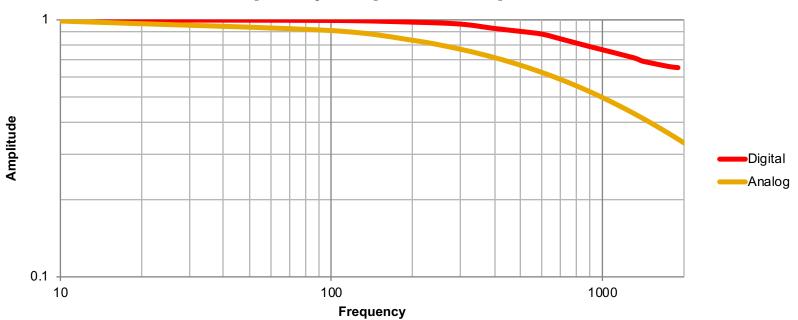
FIR Filter Implementation

- ≥ z⁻¹ is unit delay
- > Suppose N = 4 and $a_0 = a_1 = a_2 = a_3 = 1/4$.
- \triangleright Then for all $n \in N$,

$$y(n) = (x(n) + x(n - 1) + x(n - 2) + x(n - 3))/4$$
.

Multiply-Accumulate

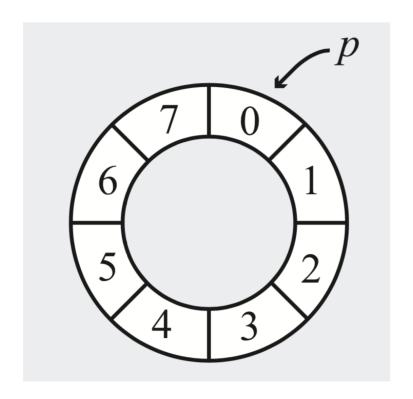
Tapped delay line implementation of the FIR filter ...


Multiply-Accumulate Instructions

- Digital Signal Processors provide a fast and efficient multiplyaccumulate (MAC) instruction
 - Typically including a relatively large accumulator
- > They also typically use a Harvard memory access architecture
- > They may include auto-increment addressing modes
- > They may support circular buffer addressing
 - Efficient implementation of delay lines
- > They may support zero-overhead loops

Comparison

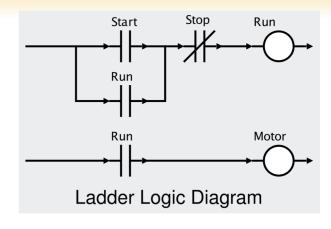
Frequency Response Comparison


Digital Filter Critique

- > The filter pole is at about ¼ of the sampling rate
 - We have only 4 samples of the impulse response
 - This makes the FIR filter simple: only 4 taps
 - This also degrades the filter performance
- We may be able to improve the filter performance some by using a different design technique
 - The filter coefficients would differ
- > A higher sampling rate with respect to the filter corner frequency could also help

FIR Filter Delay Implementation

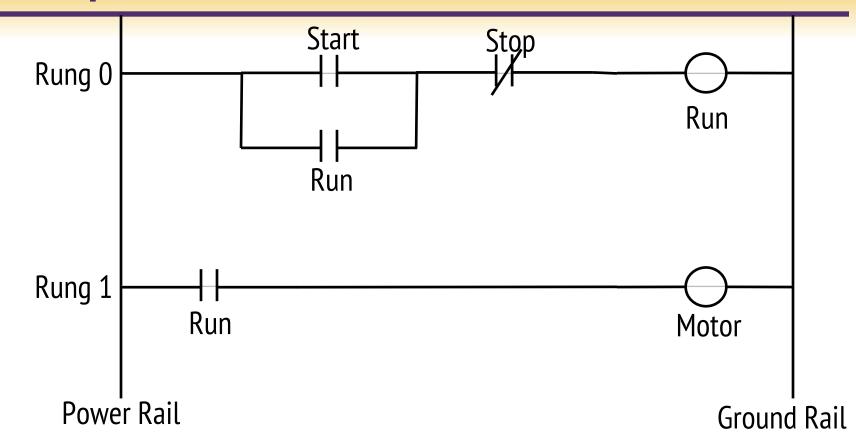
> Circular Buffer


Programmable Logic Controller (PLC)

- > A microcontroller system for industrial automation
 - Continuous operation
 - Hostile environments
 - originated as replacements for control circuits using electrical relays to control machinery

- > PLCs are frequently programmed using ladder logic
 - This notation was developed to specify logic constructed with relays and switches

Ladder Logic & Relays


- Relay is a switch where the contact is controlled by coil.
- When a voltage is applied to the coil, the contact closes, enabling current to flow through the relay.
- By interconnecting contacts and coils, relays can be used to build digital controllers that follow specified patterns.

- Vertical Rails & Horizontal Rungs
- Contact: two vertical bars
- > Coil: circle

Example

Example: explained

- > Start/Run is a **normally open** contact
- > Stop is **normally closed**, indicated by the slash
 - It becomes open when the operator pushes the switch.
- > When start is pushed, electricity flows
 - Both Start and Run contacts close so that Motor runs
 - When Start is released, Motor continues to run
 - When Stop is pressed, current is interrupted and both Run contacts become open and motor stops
- Contacts wired in parallel perform a logical OR function, and contacts wired in series perform a logical AND.

GPUs

- ➤ A graphics processing unit (GPU) is a specialized processor designed especially to per- form the calculations required in graphics rendering.
- Most used for Gaming (earlier days)
- Common programming language: CUDA

Parallelism vs Concurrency

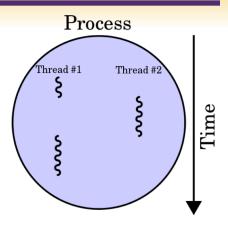
- Embedded computing applications typically do more than one thing "at a time."
- > Tasks are said to be "concurrent" if they conceptually execute simultaneously
- > Tasks are said to be "parallel" if they physically execute simultaneously
 - Typically multiple servers at the same time

Imperative Language

- ➤ Non-concurrent programs specify a *sequence* of instructions to execute.
- Imperative Language: expresses a computation as a sequence of operations
 - Example: C, Java
- ➤ How to write concurrent programs in imperative language?
 - Thread Library

Program Dependency – Sequential Consistency

No dependency between lines 3 and 4


```
double pi, piSquared, piCubed;
pi = 3.14159;
piSquared = pi * pi ;
piCubed = pi * pi * pi;
```

Line 4 is dependent on Line 3

```
double pi, piSquared, piCubed;
pi = 3.14159;
piSquared = pi * pi;
piCubed = piSquared * pi;
```

Thread Mapping on Processor

- > OS Dependent Scheduler
 - Static Mapping
 - Basic Lowest Load (fill in Round Robin fashion)
 - Extended Lowest Load

Performance Improvement

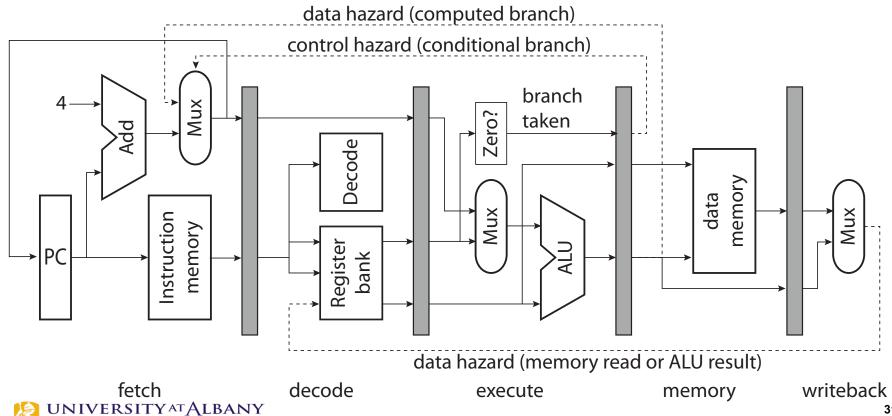
- > Various current architectures seek to improve performance by finding and exploiting potentials for parallel execution
 - This frequently improves processing throughput
 - It does not always improve processing latency
 - It frequently makes processing time less predictable
- Many embedded applications rely on results being produced at predictable regular rates
 - Embedded results must be available at the <u>right</u> time

Parallelism

- Temporal Parallelism Pipelining
- Spatial Parallelism
 - Superscalar
 - VLIW
 - Multicore

RISC and CISC Architectures

- CISC Complex Instruction Set Computer
 - Multi-clock complex instructions
- > RISC Reduced Instruction Set Computer
 - Simple instructions that can be executed within one cycle


5 Cycles of RISC Instruction Set

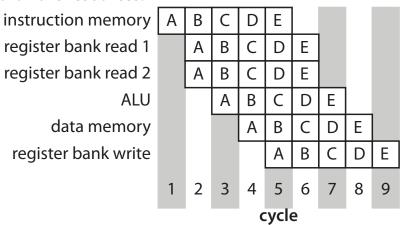
- Instruction fetch cycle (IF)
 - Fetch instruction from memory pointed by PC, then increment PC
- Instruction decode/register fetch cycle (ID)
 - Decode the instruction
- Execution/effective address cycle (EX)
 - ALU operates on the operands
- Memory access (MEM)
 - Load/Store instructions
- Write-back cycle (WB)
 - Register-Register ALU instruction

Pipelining in RISC

State University of New York

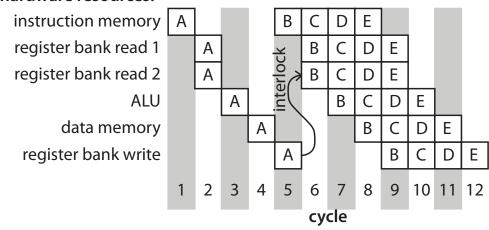
Simple RISC Pipeline

Instruction number	Clock number								
	1	2	3	4	5	6	7	8	9
Instruction i	IF	ID	EX	MEM	WB				
Instruction $i + 1$		IF	ID	EX	MEM	WB			
Instruction $i + 2$			IF	ID	EX	MEM	WB		
Instruction $i + 3$				IF	ID	EX	MEM	WB	
Instruction $i + 4$					IF	ID	EX	MEM	WB



Pipelining Hazard

- Data Hazard
- Control Hazard
- Out-of-order Execution
- Speculative Execution


Out-of-order Execution

hardware resources:

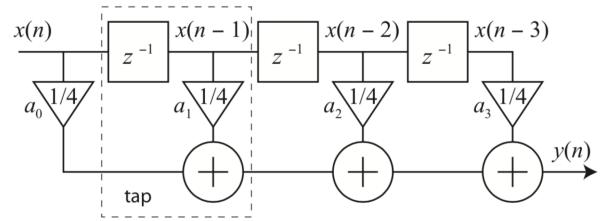
Reservation Table

hardware resources:

Reservation Table with Interlocks

CISC

- DSPs are typically CISC machines
- > Instructions support
 - FIR filtering
 - FFTs
 - Viterbi decoding



FIR Filter Implementation

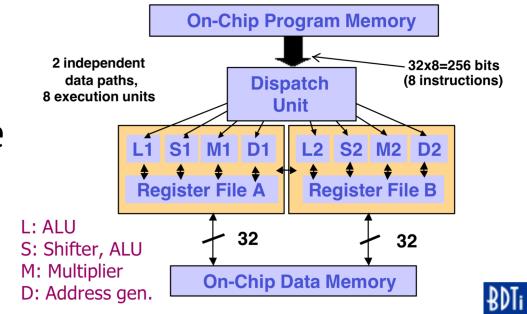
- ≥ z⁻¹ is unit delay
- > Suppose N = 4 and $a_0 = a_1 = a_2 = a_3 = 1/4$.
- \triangleright Then for all $n \in N$,

$$y(n) = (x(n) + x(n - 1) + x(n - 2) + x(n - 3))/4$$
.

Multiply-Accumulate

Tapped delay line implementation of the FIR filter ...

CISC Instruction

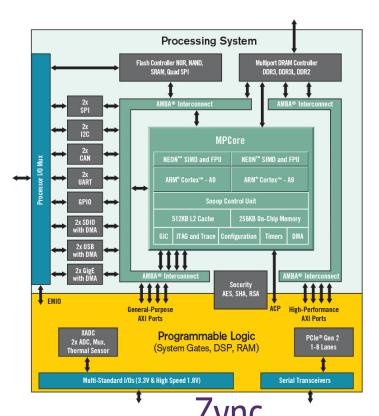

- Texas Instruments TMS320c54x family of DSP processors
- > Code
 - RPT numberOfTaps 1
 - MAC *AR2+, *AR3+, A
- > RPT: zero overhead loops
- > MAC : Multiply accumulate
 - a := a + x * y
 - AR2, AR3 are registers
 - A is the Accumulator

VLIW Instruction Set

- Used for DSP, other Embedded Applications
- Multiple independent instructions per cycle, packed into single large "instruction word" or "packet"

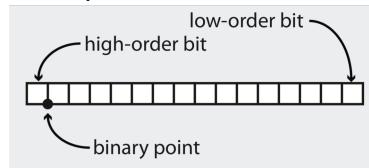
Example VLIW DSP: The TI TMS320C62xx

© 1999 Berkeley Design Technology, Inc.

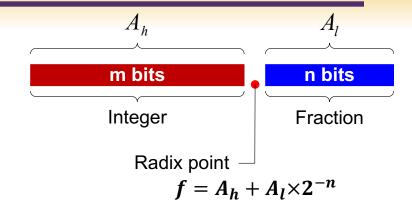

Multicore Architecture

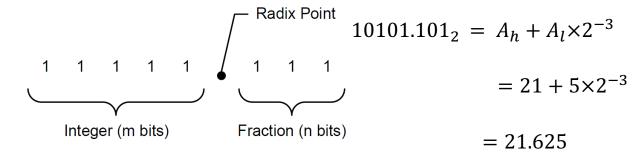
- > Combination of several processors in a single chip
- Real-time and Safety critical tasks can have dedicated processors
- > Heterogeneous multicore
 - CPU and GPUs together

FPGAs


- Field Programmable Gate Arrays
 - Set of logic gates and RAM blocks
 - Reconfigurable / Programmable
 - Precise timing

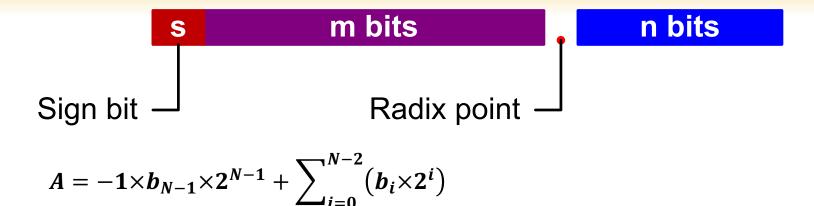
System on Chip design


Fixed and Floating Point Numbers


- > Programs may use float or double
- Many embedded processors do not have floating point arithmetic hardware
- Conversion required, which makes it slow
- Imaginary Binary Point is considered for computation
 - Binary point separates bits
 - Decimal point separates digits
- > Format x.y representation indicates
 - x bits left & y bits right of binary point

Fixed Point Numbers

- > 01101.101₂
- $= 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-3}$
- > = 13.625


Unsigned Fixed Point Representation

Example: Convert f = 3.141593 to unsigned fixed-point UQ4.12 format.

- ightharpoonup Calculate $f \times 2^{12} = 12867.964928$
- > Round the result to an integer, round(12867.964928) = 12868
- > Convert the integer to binary: 12868 = **11_0010_0100_0100**2
- Organize into UQ4.12: 0011.0010_0100_01002
- > Final result in Hex: 0x3244
- \rightarrow Error: $\frac{12868}{2^{12}} f = -8.5625 \times 10^{-6}$

Signed Fixed Point Representation

$$f=\frac{A}{2^n}$$

where
$$N = m + n + 1$$

Signed Fixed Point Representation

- **Example**: Convert f = -3.141593 to signed fixed-point Q3.12 format.
- \rightarrow Calculate $f \times 2^{12} = -12867.964928$
- ► Round the result to an integer, round(-12867.964928) = -12868
- Convert the absolute integer to binary: $12868 = 11_0010_0100_0100_2$ (Note that the integer is represented in two's complement.)
- Make the result into 16 bits: 0011_0010_0100_01002
- > Find the two's complement: **1100_1101_1011_1100**₂
- Final result in Hex: OxCDBC
- From: $-\frac{12868}{2^{12}} f = 8.5625 \times 10^{-6}$

Addition and Subtraction

Addition

$$f_C = f_A + f_B$$

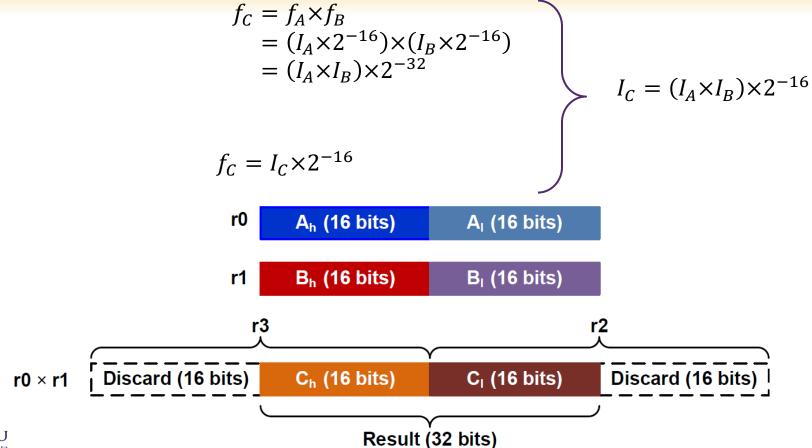
$$\begin{cases} I_A = f_A \times 2^{16} \\ I_B = f_B \times 2^{16} \\ I_C = f_C \times 2^{16} \end{cases}$$

$$\begin{cases} I_A = f_A \times 2^{16} \\ I_B = f_B \times 2^{16} \\ I_C = f_C \times 2^{16} \end{cases} \qquad \qquad \begin{cases} f_A = I_A \times 2^{-16} \\ f_B = I_B \times 2^{-16} \\ f_C = I_C \times 2^{-16} \end{cases}$$

$$f_C = f_A + f_B$$

= $I_A \times 2^{-16} + I_B \times 2^{-16}$
= $(I_A + I_B) \times 2^{-16}$

$$I_C \times 2^{-16} = (I_A + I_B) \times 2^{-16}$$



$$I_C = I_A + I_B$$

Subtraction

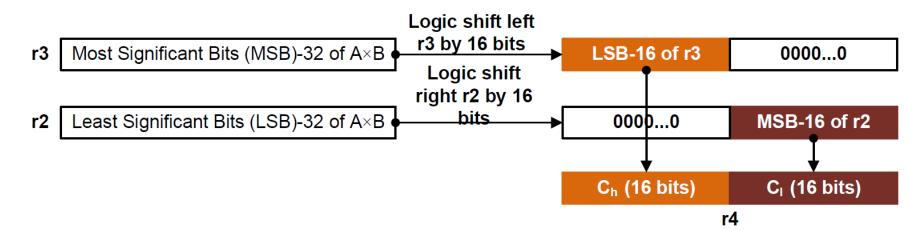
$$f_C = f_A - f_B$$
$$I_C = I_A - I_B$$

Multiplication

Law of Conservation of Bits

- ➤ When multiplying two x-bit numbers with formats n.m and p.q, the result has format (n + p).(m + q)
- Processors might support full precision multiplications
- > Finally need to convert to x-bits to data register

Fixed Point Multiplication


$$f_{C} = f_{A} \times f_{B}$$

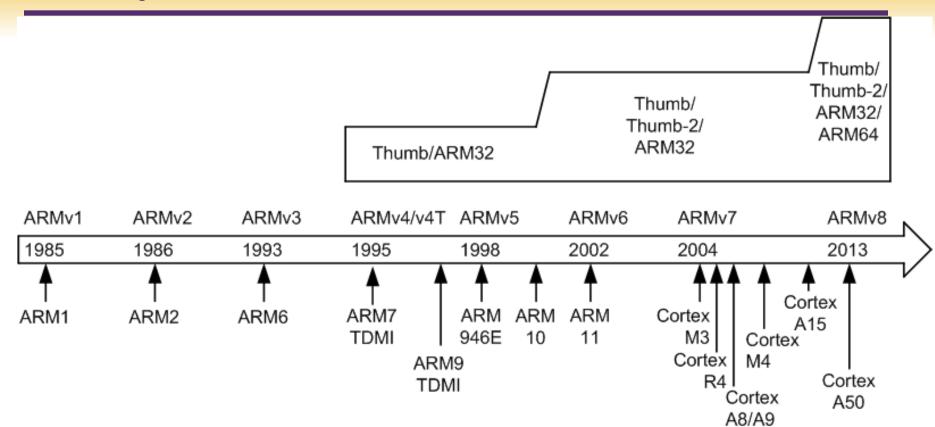
$$= (I_{A} \times 2^{-16}) \times (I_{B} \times 2^{-16})$$

$$= (I_{A} \times I_{B}) \times 2^{-32}$$

$$f_{C} = I_{C} \times 2^{-16}$$

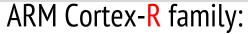
$$I_{C} = (I_{A} \times I_{B}) \times 2^{-16}$$

Overflow Example


- ➤ Multiply 0.5x0.5
- \rightarrow Fixed point representation of 0.5 = 2^{30}
- - ➤ Result of Multiplication = 2⁶⁰
 - Discard higher bits results in error
 - > Remedy: Shift Right before multiply
- - > Result = 0.01, interpreted as 0.25

Programmers need to guard

- > Overflow since higher order bits are discarded
- > Truncation, if bits are chosen before operation
- Rounding rounds to nearest full precision after operation


History of ARM Processor

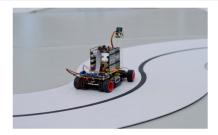
ARM Cortex Processors

ARM Cortex-A family:

Applications processors
Support OS and high-performance applications
Such as Smartphones, Smart TV

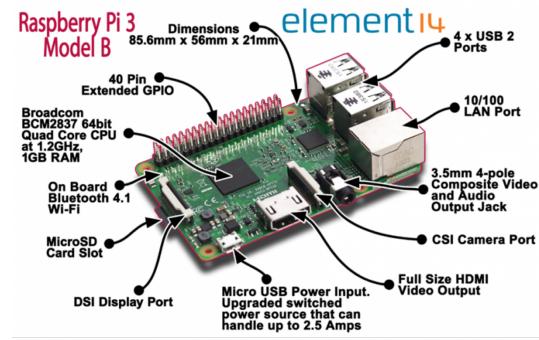
Real-time processors with high performance and high reliability

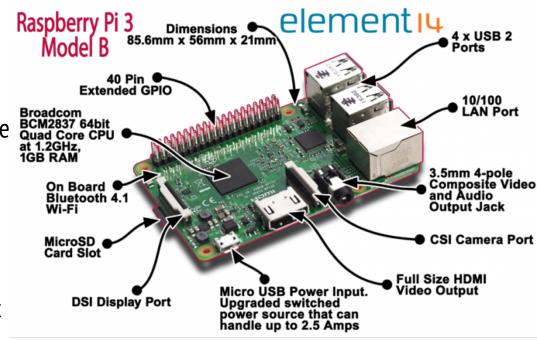
Support real-time processing and mission-critical control



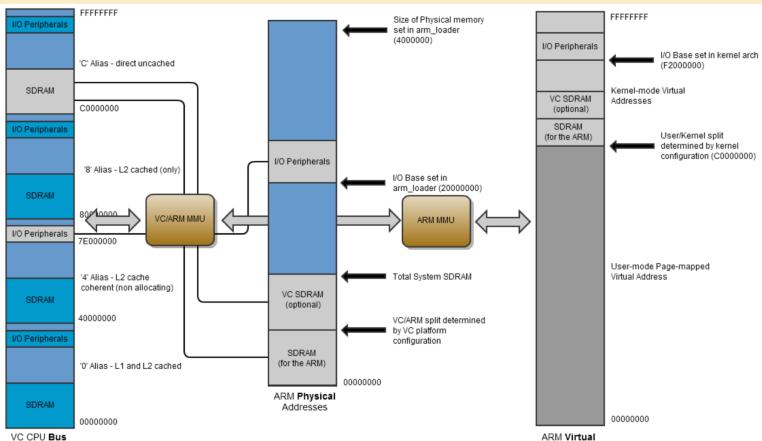
ARM Cortex-M family:

Microcontroller Cost-sensitive, support SoC




Raspberry Pi

- > The Raspberry Pi 3 Model B+ is the latest product in Raspberry Pi range.
 - Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
 - 1GB LPDDR2 SDRAM
 - 2.4GHz and 5GHz IEEE
 802.11.b/g/n/ac wireless LAN,
 Bluetooth 4.2, BLE
 - Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)
 - Extended 40-pin GPIO header
 - Full-size HDMI



Raspberry Pi

- > The Raspberry Pi 3 Model B+ is the latest product in Raspberry Pi range.
 - CSI camera port for connecting a Raspberry Pi camera
 - DSI display port for connecting a Raspberry Pi touchscreen display
 - 4-pole stereo output and composite video port
 - Micro SD port for loading your operating system and storing data
 - 5V/2.5A DC power input
 - Power-over-Ethernet (PoE) support (requires separate PoE HAT)

ARM Peripherals

VC CPU Bus Addresses

GPIO Pins

https://pinout.xyz

