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Network Security 

Goals:  
Ø  understand principles of network security:  
§  cryptography and its many uses beyond “confidentiality” 
§  authentication 
§  message integrity 

Ø  security in practice: 
§  firewalls and intrusion detection systems 
§  security in application, transport, network, link layers 
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Motivation 
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What is network security? 

Ø  confidentiality: only sender, intended receiver should “understand” 
message contents 

n  Method – encrypt at sender, decrypt at receiver 
n  A protocol that prevents an adversary from understanding the message contents is said to 

provide confidentiality. 
n  Concealing the quantity or destination of communication is called traffic confidentiality. 

Ø  message integrity: sender, receiver want to ensure message not 
altered (in transit, or afterwards) without detection 

n  A protocol that detects message tampering provides data integrity.  
n  The adversary could alternatively transmit an extra copy of your message in a replay attack. 
n  A protocol that detects message tampering provides originality. 
n  A protocol that detects delaying tactics provides timeliness. 
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What is network security? 

Ø  authentication: sender, receiver want to confirm identity of each 
other  

§  A protocol that ensures that you really are talking to whom you think you’re talking is said to 
provide authentication. 

§  Example: DNS Attack [correct URL gets converted to malicious IP] 

Ø  access and availability: services must be accessible and available 
to users 

§  A protocol that ensures a degree of access is called availability. 
§  Denial of Service (DoS) Attack 
§  Example: SYN Flood attack (Client not transmitting 3rd message in TCP 3-way handshake, thus 

consuming server’s resource) 
§  Example: Ping Flood (attacker transmits ICMP Echo Request packets) 
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Friends and enemies: Alice, Bob, Trudy 
Ø  well-known in network security world 
Ø  Bob, Alice (lovers!) want to communicate “securely” 
Ø  Trudy (intruder) may intercept, delete, add messages 

secure 
sender s secure 

receiver 

channel data, control 
messages 

data data 

Alice Bob 

Trudy 
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Who might Bob, Alice be? 
Ø  … well, real-life Bobs and Alices! 
Ø  Web browser/server for electronic transactions (e.g., on-

line purchases) 
Ø  on-line banking client/server 
Ø  DNS servers 
Ø  routers exchanging routing table updates 
Ø  other examples? 
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There are bad guys (and girls) out there! 
Q: What can a “bad guy” do? 
A: A lot!  
§  eavesdrop: intercept messages 
§  actively insert messages into connection 
§  impersonation: can fake (spoof) source address in packet (or 

any field in packet) 
§  hijacking: “take over” ongoing connection by removing 

sender or receiver, inserting himself in place 
§  denial of service: prevent service from being used by others 

(e.g.,  by overloading resources) 
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Cryptography in Insecure Network 
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The language of cryptography 

m plaintext message 
KA(m) ciphertext, encrypted with key KA 
m = KB(KA(m)) 

 

plaintext plaintext ciphertext 

K 
A 

encryption 
algorithm 

decryption  
algorithm 

Alice’s  
encryption 
key 

Bob’s  
decryption 
key 

K 
B 
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Symmetric key cryptography 

symmetric key crypto: Bob and Alice share same (symmetric) key: Ks 

Ø  e.g., key is knowing substitution pattern in mono alphabetic substitution 
cipher 

Q: how do Bob and Alice agree on key value? 

plaintext ciphertext 

K S 

encryption 
algorithm 

decryption  
algorithm 

K S 

plaintext 
message, m 

K    (m) 
S 

m = KS(KS(m)) 
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Simple encryption scheme 

substitution cipher: substituting one thing for another 
§  monoalphabetic cipher: substitute one letter for another 

plaintext:  abcdefghijklmnopqrstuvwxyz 

ciphertext:  mnbvcxzasdfghjklpoiuytrewq 

Plaintext: bob. i love you. alice 
ciphertext: nkn. s gktc wky. mgsbc 

e.g.: 

Encryption key: mapping from set of 26 letters 
                     to set of 26 letters 
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Breaking an encryption scheme 
Ø  cipher-text only attack: Trudy 

has ciphertext she can analyze 
Ø  two approaches: 
§  brute force: search through all keys  
§  statistical analysis 

Ø  known-plaintext attack: Trudy 
has plaintext corresponding to 
ciphertext [when an intruder 
knows some of the (plain, cipher) 
pairings] 

§  e.g., in monoalphabetic cipher, Trudy 
determines pairings for a,l,i,c,e,b,o, 

Ø  chosen-plaintext attack: Trudy 
can get ciphertext for chosen 
plaintext 

§  If Trudy could get Alice to send 
encrypted message, “The quick brown 
fox jumps over the lazy dog”, then the 
encryption is broken. 
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Polyalphabetic Cipher 

Ø  n substitution ciphers, C1,C2,…,Cn 

Ø  cycling pattern: 
§  e.g., n=4 [C1-C4], k=key length=5:  C1,C3,C4,C3,C2;  C1,C3,C4,C3,C2; .. 

Ø  for each new plaintext symbol, use subsequent 
substitution pattern in cyclic pattern 

§  dog: d from C1, o from C3, g from C4 

    Encryption key: n substitution ciphers, and cyclic             
pattern 

§  key need not be just n-bit pattern 

• Chosen-plaintext attack. In a chosen-plaintext attack, the intruder is able to
choose the plaintext message and obtain its corresponding ciphertext form. For
the simple encryption algorithms we’ve seen so far, if Trudy could get Alice to
send the message, “The quick brown fox jumps over the lazy
dog,” she could completely break the encryption scheme. We’ll see shortly that
for more sophisticated encryption techniques, a chosen-plaintext attack does not
necessarily mean that the encryption technique can be broken.

Five hundred years ago, techniques improving on monoalphabetic encryption,
known as polyalphabetic encryption, were invented. The idea behind polyalpha-
betic encryption is to use multiple monoalphabetic ciphers, with a specific monoal-
phabetic cipher to encode a letter in a specific position in the plaintext message.
Thus, the same letter, appearing in different positions in the plaintext message,
might be encoded differently. An example of a polyalphabetic encryption scheme is
shown in Figure 8.4. It has two Caesar ciphers (with k = 5 and k = 19), shown as
rows. We might choose to use these two Caesar ciphers, C1 and C2, in the repeating
pattern C1, C2, C2, C1, C2. That is, the first letter of plaintext is to be encoded using
C1, the second and third using C2, the fourth using C1, and the fifth using C2. The
pattern then repeats, with the sixth letter being encoded using C1, the seventh with
C2, and so on. The plaintext message “bob, i love you.” is thus encrypted
“ghu, n etox dhz.” Note that the first b in the plaintext message is encrypted
using C1, while the second b is encrypted using C2. In this example, the encryption
and decryption “key” is the knowledge of the two Caesar keys (k = 5, k = 19) and
the pattern C1, C2, C2, C1, C2.

Block Ciphers

Let us now move forward to modern times and examine how symmetric key encryp-
tion is done today. There are two broad classes of symmetric encryption techniques:
stream ciphers and block ciphers. We’ll briefly examine stream ciphers in Section
8.7 when we investigate security for wireless LANs. In this section, we focus on
block ciphers, which are used in many secure Internet protocols, including PGP
(for secure e-mail), SSL (for securing TCP connections), and IPsec (for securing the
network-layer transport).

678 CHAPTER 8 • SECURITY IN COMPUTER NETWORKS

Plaintext letter: a b c d e f g h i j k l m n o p q r s t u v w x y z
C1(k = 5): 
C2(k = 19): 

f g h i j k l m n o p q r s t u v w x y z a b c d e
t u v w x y z a b c d e f g h i j k l m n o p q r s

Figure 8.4 ! A polyalphabetic cipher using two Caesar ciphers
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Block vs Stream Cipher 

Ø  Block ciphers process messages into blocks, each of 
which is then en/decrypted  

§  64-bits or more  
§  Example: DES, AES 

Ø  Stream ciphers process messages a bit or byte at a time 
when en/decrypting 

§  Example: WEP (used in 802.11) 

Ø  Brute Force attack is possible if few number of bits are 
chosen 



16 

Cipher Block Chaining 

Ø  Plaintext block is XORed with the 
previous block’s ciphertext before 
being encrypted.  

§  Each block’s ciphertext depends on the 
preceding blocks 

§  First plaintext block is XORed with a random 
number.  
ü  That random number, called an initialization vector (IV), is 

included with the series of ciphertext blocks so that the first 
ciphertext block can be decrypted. 

Ø  Provides better efficiency for brute 
force attack 

ciphertext 
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Symmetric key crypto: DES 

DES: Data Encryption Standard 
Ø  US encryption standard [NIST 1993] 
Ø  56-bit symmetric key, 64-bit plaintext input 
Ø  block cipher with cipher block chaining 
Ø  how secure is DES? 
§  DES Challenge: 56-bit-key-encrypted phrase, decrypted (brute force) in 

less than a day 
§  no known good analytic attack 

Ø  making DES more secure: 
§  3DES: encrypt 3 times with 3 different keys 
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Symmetric key crypto: DES 

Ø  initial permutation (on 64 
bits) 

Ø  16 identical “rounds” of 
function application 

§  each using different 48 bits of key 
§  rightmost 32 bits are moved to 

leftmost 32 bits 

Ø  final permutation (on 64 
bits) 

 

DES operation 

Kaufman, Schneier, 1995 
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AES: Advanced Encryption Standard 

Ø  symmetric-key NIST standard, replaced DES (Nov 2001) 
Ø  processes data in 128 bit blocks 
Ø  128, 192, or 256 bit keys 
Ø  brute force decryption (try each key) taking 1 sec on DES, 

takes 149 trillion years for AES 
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Public Key Cryptography 

symmetric key crypto 
Ø  requires sender, receiver know 

shared secret key 
Ø  Q: how to agree on key in first 

place (particularly if never 
“met”)? 

public key crypto 
§  radically different approach 

[Diffie-Hellman76, RSA78] 
§  sender, receiver do not share 

secret key 
§  public encryption key known 

to all 
§  private decryption key known 

only to receiver 



21 

Public key cryptography 

plaintext 
message, m 

ciphertext encryption 
algorithm 

decryption  
algorithm 

Bob’s public  
key  

plaintext 
message K  (m) 

B 
+ 

K  
B 
+ 

Bob’s private 
key  

K  
B 
- 

m = K  (K  (m)) 
B 
+ 

B 
- 
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Public key encryption algorithms 

need K  ( ) and K  ( ) such that B B 
. . 

given public key K  , it should be 
impossible to compute private key K   

B 

B 

requirements: 

1 

2 

RSA: Rivest, Shamir, Adelson algorithm [1999] 

+ - 

K  (K  (m))  =  m  
B B 

- + 

+ 
- 
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Prerequisite: modular arithmetic 
Ø x mod n = remainder of x when divide by n 
Ø facts: 

[(a mod n) + (b mod n)] mod n = (a+b) mod n 
[(a mod n) - (b mod n)] mod n = (a-b) mod n 
[(a mod n) * (b mod n)] mod n = (a*b) mod n 

Ø thus 
    (a mod n)d mod n = ad mod n 
Ø example: x=14, n=10, d=2: 

  (x mod n)d mod n = 42 mod 10 = 6 
  xd = 142 = 196   xd mod 10  = 6  
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RSA: getting ready 

Ø message: just a bit pattern 
Ø bit pattern can be uniquely represented by an integer 

number  
Ø thus, encrypting a message is equivalent to encrypting a 

number 
example: 
Ø  m= 10010001 . This message is uniquely represented by the decimal 

number 145.  
Ø  to encrypt m, we encrypt the corresponding number, which gives a new 

number (the ciphertext). 
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RSA: Creating public/private key pair 

1. choose two large prime numbers p, q.  
   (e.g., 1024 bits each) 

2. compute n = pq,  z = (p-1)(q-1) 

3. choose e (with e<n) that has no common factors 
    with z (e, z are “relatively prime”). 

4. choose d such that ed-1 is  exactly divisible by z. 
    (in other words: ed mod z  = 1 ). 

5. public key is (n,e).  private key is (n,d). 

K  B 
+ K  B 

- 



26 

RSA: encryption, decryption 

0.  given (n,e) and (n,d) as computed above 

1. to encrypt message m (<n), compute 
c = m   mod  n e 

2. to decrypt received bit pattern, c, compute 
m = c   mod  n d 

m  =  (m   mod  n) e  mod  n d magic 
happens! 

c 
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RSA example: 

Bob chooses p=5, q=7.  Then n=35, z=24. 
e=5  (so e, z  relatively prime). 
d=29 (so ed-1 exactly divisible by z). 
  

bit pattern m m e c = m  mod  n e 

0000l000 12 24832 17 
encrypt: 

encrypting 8-bit messages. 

c m = c  mod  n d 

17 481968572106750915091411825223071697 12 

c d 
decrypt: 



28 

Why does RSA work? 

Ø  must show that cd mod n = m  
where c = me mod n 

Ø  fact: for any x and y: xy mod n = x(y mod z) mod n 
§  where n= pq and z = (p-1)(q-1) 

Ø  thus,  
 cd mod n = (me mod n)d mod n 

                  = med mod n  
                  = m(ed mod z) mod n 
                  = m1 mod n 
                  = m 
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RSA: another important property 

The following property will be very useful later: 

K  (K  (m))  =  m  
B B 

- + 
K  (K  (m))   

B B 
+ - 

= 

use public key first, 
followed by private 

key  

use private key first, 
followed by public 

key  

result is the same!  
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How is it possible?  

 
follows directly from modular arithmetic: 
 
(me mod n)d mod n = med mod n 
                             = mde mod n 
                             = (md mod n)e mod n  
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Why is RSA secure? 

Ø  suppose you know Bob’s public key (n,e). How hard is it to 
determine d? 

Ø  essentially need to find factors of n without knowing the 
two factors p and q  

§  fact: factoring a big number is hard 
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RSA in practice: session keys 

Ø  exponentiation in RSA is computationally intensive 
Ø  DES is at least 100 times faster than RSA 
Ø  use public key crypto to establish secure connection, then 

establish second key – symmetric session key – for 
encrypting data 

session key, KS 
Ø  Bob and Alice use RSA to exchange a symmetric key KS 

Ø  once both have KS, they use symmetric key cryptography 
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Authentication 

Goal: Bob wants Alice to “prove” her identity to him 

Protocol ap1.0:  Alice says “I am Alice” 

Failure scenario?? 
“I am Alice” 
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in a network, 
Bob can not “see” Alice, so 

Trudy simply declares 
herself to be Alice “I am Alice” 

Authentication 

Goal:  Bob wants Alice to “prove” her identity to him 

Protocol ap1.0:  Alice says “I am Alice” 
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Authentication: another try 

Protocol ap2.0: Alice says “I am Alice” in an IP packet 
containing her source IP address  

Failure scenario?? 

“I am Alice” 
Alice’s  

IP address 
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Trudy can create 
a packet “spoofing” 

Alice’s address 
“I am Alice” 

Alice’s  
IP address 

Authentication: another try 

Protocol ap2.0: Alice says “I am Alice” in an IP packet 
containing her source IP address  
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Protocol ap3.0:  Alice says “I am Alice” and sends her 
 secret password to “prove” it. 

Failure scenario?? 

“I’m Alice” Alice’s  
IP addr 

Alice’s  
password 

OK Alice’s  
IP addr 

Authentication: another try 
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playback attack: Trudy records 
Alice’s packet 

and later 
plays it back to Bob  

“I’m Alice” Alice’s  
IP addr 

Alice’s  
password 

OK Alice’s  
IP addr 

Authentication: another try 

“I’m Alice” Alice’s  
IP addr 

Alice’s  
password 

Protocol ap3.0:  Alice says “I am Alice” and sends her 
 secret password to “prove” it. 
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Authentication: yet another try 

Protocol ap3.1:  Alice says “I am Alice” and sends her 
 encrypted secret password to “prove” it. 

Failure scenario?? 

“I’m Alice” Alice’s  
IP addr 

encrypted  
password 

OK Alice’s  
IP addr 
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record 
and 

playback 
still works! 

“I’m Alice” Alice’s  
IP addr 

encrypted 
password 

OK Alice’s  
IP addr 

Authentication: yet another try 

“I’m Alice” Alice’s  
IP addr 

encrypted 
password 

Protocol ap3.1:  Alice says “I am Alice” and sends her 
 encrypted secret password to “prove” it. 
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Goal: avoid playback attack 

Failures, drawbacks? 

nonce: number (R) used only once-in-a-lifetime 
ap4.0: to prove Alice “live”, Bob sends Alice nonce, R.  Alice 

must return R, encrypted with shared secret key 

“I am Alice” 

R 

K    (R) A-B 
Alice is live, and only 
Alice knows key to 
encrypt nonce, so it 

must be Alice! 

Authentication: yet another try 
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Authentication: ap5.0 
ap4.0 requires shared symmetric key  
Ø  can we authenticate using public key techniques? 
ap5.0: use nonce, public key cryptography 

“I am Alice” 

R 
Bob computes 

 
K   (R) A 

- 

“send me your public key” 

K   A 
+ 

(K  (R)) = R A 
- 

K    A 
+ 

and knows only Alice could have 
the private key, that encrypted R 

such that 

(K  (R)) = R A 
- 

K   A 
+ 
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ap5.0: security hole 
man (or woman) in the middle attack: Trudy poses as Alice (to Bob) 
and as Bob (to Alice) 

I am Alice I am Alice 
R 

T 
K   (R) 

- 

Send me your public key 

T 
K    

+ 
A K   (R) 
- 

Send me your public key 

A 
K    + 

T K   (m) 
+ 

T 
m = K  (K   (m)) + 

T 
- 

Trudy gets 

sends m to Alice 
encrypted with Alice’s 

public key 

A K  (m) 
+ 

A 
m = K  (K   (m)) + 

A 
- 

R 
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ap5.0: security hole 

difficult to detect: 
§  Bob receives everything that Alice sends, and vice versa. (e.g., so Bob, 

Alice can meet one week later and recall conversation!) 
§  problem is that Trudy receives all messages as well!  

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) 
and as Bob (to Alice) 
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Digital signatures  

cryptographic technique analogous to hand-written 
signatures: 

Ø  sender (Bob) digitally signs document,  establishing he is 
document owner/creator.  

Ø  verifiable, nonforgeable: recipient (Alice) can prove to someone 
that Bob, and no one else (including Alice), must have signed 
document  
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Digital signatures  

simple digital signature for message m: 
Ø  Bob signs m by encrypting with his private key KB, creating “signed” 

message, KB(m) 
- 

- 

Dear Alice 
Oh, how I have missed you. I 
think of you all the time! …
(blah blah blah) 

Bob 

Bob’s message, m 

Public key 
encryption 
algorithm 

Bob’s private 
key  

K  B 
- 

Bob’s message, m, 
signed (encrypted) with 

his private key 

m, K  B 
- 
 (m) 
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- 

Digital signatures  

Alice thus verifies that: 
§  Bob signed m 
§  no one else signed m 
§  Bob signed m and not m‘ 

non-repudiation: 
ü  Alice can take m, and signature KB(m) to court and prove that Bob 

signed m - 

§  suppose Alice receives msg m, with signature: m, KB(m) 
§  Alice verifies m signed by Bob by applying Bob’s public key KB to KB(m) 

then checks KB(KB(m) ) = m. 
§  If KB(KB(m) ) = m, whoever signed m must have used Bob’s private key. 

- 

- - 

+ 

+ + 
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Firewalls 

isolates organization’s internal net from larger Internet, allowing 
some packets to pass, blocking others 

firewall 

    

  

  
    

  administered 
network 

public 
Internet 

firewall 
trusted “good guys”  untrusted “bad guys”  
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Firewalls: why do we need it? 
prevent denial of service attacks: 

§  SYN flooding: attacker establishes many bogus TCP connections, no 
resources left for “real” connections 

prevent illegal modification/access of internal data 
§  e.g., attacker replaces CIA’s homepage with something else 

allow only authorized access to inside network 
§   set of authenticated users/hosts 

three types of firewalls: 
§  stateless packet filters 
§  stateful packet filters 
§  application gateways 
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Stateless packet filtering 

Ø  internal network connected to Internet via router firewall 
Ø  router filters packet-by-packet, decision to forward/drop packet based 

on: 
§  source IP address, destination IP address 
§  TCP/UDP source and destination port numbers 
§  ICMP message type 
§  TCP SYN and ACK bits 

Should arriving packet be 
allowed in? Departing 

packet let out? 
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Stateless packet filtering: example 
Ø  example 1: block incoming and outgoing datagrams with IP protocol 

field = 17 and with either source or dest port = 23 
§  result: all incoming, outgoing UDP flows and telnet connections are 

blocked 
Ø  example 2: block inbound TCP segments with ACK=0. 
§  result: prevents external clients from making TCP connections with 

internal clients, but allows internal clients to connect to outside. 
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Policy Firewall Setting 
No outside Web access. Drop all outgoing packets to any IP address, 

port 80 
No incoming TCP connections, except 
those for institution’s public Web server 
only. 

Drop all incoming TCP SYN packets to any IP 
except 130.207.244.203, port 80 

Prevent Web-radios from eating up the 
available bandwidth. 

Drop all incoming UDP packets - except DNS 
and router broadcasts. 

Prevent your network from being used for 
a smurf DoS attack. 

Drop all ICMP packets going to a “broadcast” 
address (e.g. 130.207.255.255). 

Prevent your network from being 
tracerouted 

Drop all outgoing ICMP TTL expired traffic 

Stateless packet filtering: more examples 
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action 
source 

address 
dest 

address 
protocol 

source 
port 

dest 
port 

flag 
bit 

allow 222.22/16 
outside of 
222.22/16 

TCP > 1023 80 
any 
 

allow 
 

outside of 
222.22/16 

222.22/16 
 

TCP 80 > 1023 ACK 

allow 222.22/16 
outside of 
222.22/16 

UDP > 1023 53 --- 

allow 
 

outside of 
222.22/16 

222.22/16 
 

UDP 53 > 1023 ---- 

deny all all all all all all 

Access Control Lists 

ACL: table of rules, applied top to bottom to incoming packets:  
(action, condition) pairs 
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Stateful packet filtering 
Ø  stateless packet filter: heavy handed tool 
§  admits packets that “make no sense,” e.g., dest port = 80, ACK bit set, even 

though no TCP connection established: 

action 
source 

address 
dest 

address 
protocol 

source 
port 

dest 
port 

flag 
bit 

allow 
 

outside of 
222.22/16 

222.22/16 
 

TCP 80 > 1023 ACK 

§  stateful packet filter: track status of every TCP connection 
•  track connection setup (SYN), teardown (FIN): determine whether 

incoming, outgoing packets “makes sense” 
•  timeout inactive connections at firewall: no longer admit packets 
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action 
source 

address 
dest 

address 
proto 

source 
port 

dest 
port 

flag 
bit 

check 
conxion 

allow 222.22/16 
outside of 
222.22/16 

TCP > 1023 80 
any 
 

allow 
 

outside of 
222.22/16 

222.22/16 
 

TCP 80 > 1023 ACK x 
 

allow 222.22/16 
outside of 
222.22/16 

UDP > 1023 53 --- 

allow 
 

outside of 
222.22/16 

222.22/16 
 

UDP 53 > 1023 ---- 
x 
 

deny all all all all all all 

Stateful packet filtering 

ACL augmented to indicate need to check connection state table before 
admitting packet 
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Application gateways 
Ø  filter packets on application data as well as on IP/TCP/UDP fields. 
Ø  example: allow select internal users to telnet outside 

1. require all telnet users to telnet through gateway. 
2. for authorized users, gateway sets up telnet connection to dest host. 

Gateway relays data between 2 connections 
3. router filter blocks all telnet connections not originating from 

gateway. 

application 
gateway 

  

host-to-gateway 
telnet session 

router and filter 

gateway-to-remote  
host telnet session 
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Limitations of firewalls, gateways 
Ø  IP spoofing: router can’t know if 

data “really” comes from claimed 
source 

Ø  if multiple app’s. need special 
treatment, each has own app. 
gateway 

Ø  client software must know how 
to contact gateway. 

§  e.g., must set IP address of 
proxy in Web browser 

Ø  filters often use all or nothing 
policy for UDP 

Ø  tradeoff:  degree of 
communication with outside 
world, level of security 

Ø  many highly protected sites still 
suffer from attacks 


