
1

Computer Communication
Networks

Network Security
ICEN/ICSI 416 – Fall 2016
Prof. Dola Saha

2

Network Security

Goals:
Ø  understand principles of network security:
§  cryptography and its many uses beyond “confidentiality”
§  authentication
§  message integrity

Ø  security in practice:
§  firewalls and intrusion detection systems
§  security in application, transport, network, link layers

3

Motivation

4

What is network security?

Ø  confidentiality: only sender, intended receiver should “understand”
message contents

n  Method – encrypt at sender, decrypt at receiver
n  A protocol that prevents an adversary from understanding the message contents is said to

provide confidentiality.
n  Concealing the quantity or destination of communication is called traffic confidentiality.

Ø  message integrity: sender, receiver want to ensure message not
altered (in transit, or afterwards) without detection

n  A protocol that detects message tampering provides data integrity.
n  The adversary could alternatively transmit an extra copy of your message in a replay attack.
n  A protocol that detects message tampering provides originality.
n  A protocol that detects delaying tactics provides timeliness.

5

What is network security?

Ø  authentication: sender, receiver want to confirm identity of each
other

§  A protocol that ensures that you really are talking to whom you think you’re talking is said to
provide authentication.

§  Example: DNS Attack [correct URL gets converted to malicious IP]

Ø  access and availability: services must be accessible and available
to users

§  A protocol that ensures a degree of access is called availability.
§  Denial of Service (DoS) Attack
§  Example: SYN Flood attack (Client not transmitting 3rd message in TCP 3-way handshake, thus

consuming server’s resource)
§  Example: Ping Flood (attacker transmits ICMP Echo Request packets)

6

Friends and enemies: Alice, Bob, Trudy
Ø  well-known in network security world
Ø  Bob, Alice (lovers!) want to communicate “securely”
Ø  Trudy (intruder) may intercept, delete, add messages

secure
sender s secure

receiver

channel data, control
messages

data data

Alice Bob

Trudy

7

Who might Bob, Alice be?
Ø  … well, real-life Bobs and Alices!
Ø  Web browser/server for electronic transactions (e.g., on-

line purchases)
Ø  on-line banking client/server
Ø  DNS servers
Ø  routers exchanging routing table updates
Ø  other examples?

8

There are bad guys (and girls) out there!
Q: What can a “bad guy” do?
A: A lot!
§  eavesdrop: intercept messages
§  actively insert messages into connection
§  impersonation: can fake (spoof) source address in packet (or

any field in packet)
§  hijacking: “take over” ongoing connection by removing

sender or receiver, inserting himself in place
§  denial of service: prevent service from being used by others

(e.g., by overloading resources)

9

Cryptography in Insecure Network

10

The language of cryptography

m plaintext message
KA(m) ciphertext, encrypted with key KA
m = KB(KA(m))

plaintext plaintext ciphertext

K
A

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

K
B

11

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric) key: Ks

Ø  e.g., key is knowing substitution pattern in mono alphabetic substitution
cipher

Q: how do Bob and Alice agree on key value?

plaintext ciphertext

K S

encryption
algorithm

decryption
algorithm

K S

plaintext
message, m

K (m)
S

m = KS(KS(m))

12

Simple encryption scheme

substitution cipher: substituting one thing for another
§  monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

e.g.:

Encryption key: mapping from set of 26 letters
 to set of 26 letters

13

Breaking an encryption scheme
Ø  cipher-text only attack: Trudy

has ciphertext she can analyze
Ø  two approaches:
§  brute force: search through all keys
§  statistical analysis

Ø  known-plaintext attack: Trudy
has plaintext corresponding to
ciphertext [when an intruder
knows some of the (plain, cipher)
pairings]

§  e.g., in monoalphabetic cipher, Trudy
determines pairings for a,l,i,c,e,b,o,

Ø  chosen-plaintext attack: Trudy
can get ciphertext for chosen
plaintext

§  If Trudy could get Alice to send
encrypted message, “The quick brown
fox jumps over the lazy dog”, then the
encryption is broken.

14

Polyalphabetic Cipher

Ø  n substitution ciphers, C1,C2,…,Cn

Ø  cycling pattern:
§  e.g., n=4 [C1-C4], k=key length=5: C1,C3,C4,C3,C2; C1,C3,C4,C3,C2; ..

Ø  for each new plaintext symbol, use subsequent
substitution pattern in cyclic pattern

§  dog: d from C1, o from C3, g from C4

 Encryption key: n substitution ciphers, and cyclic
pattern

§  key need not be just n-bit pattern

• Chosen-plaintext attack. In a chosen-plaintext attack, the intruder is able to
choose the plaintext message and obtain its corresponding ciphertext form. For
the simple encryption algorithms we’ve seen so far, if Trudy could get Alice to
send the message, “The quick brown fox jumps over the lazy
dog,” she could completely break the encryption scheme. We’ll see shortly that
for more sophisticated encryption techniques, a chosen-plaintext attack does not
necessarily mean that the encryption technique can be broken.

Five hundred years ago, techniques improving on monoalphabetic encryption,
known as polyalphabetic encryption, were invented. The idea behind polyalpha-
betic encryption is to use multiple monoalphabetic ciphers, with a specific monoal-
phabetic cipher to encode a letter in a specific position in the plaintext message.
Thus, the same letter, appearing in different positions in the plaintext message,
might be encoded differently. An example of a polyalphabetic encryption scheme is
shown in Figure 8.4. It has two Caesar ciphers (with k = 5 and k = 19), shown as
rows. We might choose to use these two Caesar ciphers, C1 and C2, in the repeating
pattern C1, C2, C2, C1, C2. That is, the first letter of plaintext is to be encoded using
C1, the second and third using C2, the fourth using C1, and the fifth using C2. The
pattern then repeats, with the sixth letter being encoded using C1, the seventh with
C2, and so on. The plaintext message “bob, i love you.” is thus encrypted
“ghu, n etox dhz.” Note that the first b in the plaintext message is encrypted
using C1, while the second b is encrypted using C2. In this example, the encryption
and decryption “key” is the knowledge of the two Caesar keys (k = 5, k = 19) and
the pattern C1, C2, C2, C1, C2.

Block Ciphers

Let us now move forward to modern times and examine how symmetric key encryp-
tion is done today. There are two broad classes of symmetric encryption techniques:
stream ciphers and block ciphers. We’ll briefly examine stream ciphers in Section
8.7 when we investigate security for wireless LANs. In this section, we focus on
block ciphers, which are used in many secure Internet protocols, including PGP
(for secure e-mail), SSL (for securing TCP connections), and IPsec (for securing the
network-layer transport).

678 CHAPTER 8 • SECURITY IN COMPUTER NETWORKS

Plaintext letter: a b c d e f g h i j k l m n o p q r s t u v w x y z
C1(k = 5):
C2(k = 19):

f g h i j k l m n o p q r s t u v w x y z a b c d e
t u v w x y z a b c d e f g h i j k l m n o p q r s

Figure 8.4 ! A polyalphabetic cipher using two Caesar ciphers

15

Block vs Stream Cipher

Ø  Block ciphers process messages into blocks, each of
which is then en/decrypted

§  64-bits or more
§  Example: DES, AES

Ø  Stream ciphers process messages a bit or byte at a time
when en/decrypting

§  Example: WEP (used in 802.11)

Ø  Brute Force attack is possible if few number of bits are
chosen

16

Cipher Block Chaining

Ø  Plaintext block is XORed with the
previous block’s ciphertext before
being encrypted.

§  Each block’s ciphertext depends on the
preceding blocks

§  First plaintext block is XORed with a random
number.
ü  That random number, called an initialization vector (IV), is

included with the series of ciphertext blocks so that the first
ciphertext block can be decrypted.

Ø  Provides better efficiency for brute
force attack

ciphertext

17

Symmetric key crypto: DES

DES: Data Encryption Standard
Ø  US encryption standard [NIST 1993]
Ø  56-bit symmetric key, 64-bit plaintext input
Ø  block cipher with cipher block chaining
Ø  how secure is DES?
§  DES Challenge: 56-bit-key-encrypted phrase, decrypted (brute force) in

less than a day
§  no known good analytic attack

Ø  making DES more secure:
§  3DES: encrypt 3 times with 3 different keys

18

Symmetric key crypto: DES

Ø  initial permutation (on 64
bits)

Ø  16 identical “rounds” of
function application

§  each using different 48 bits of key
§  rightmost 32 bits are moved to

leftmost 32 bits

Ø  final permutation (on 64
bits)

DES operation

Kaufman, Schneier, 1995

19

AES: Advanced Encryption Standard

Ø  symmetric-key NIST standard, replaced DES (Nov 2001)
Ø  processes data in 128 bit blocks
Ø  128, 192, or 256 bit keys
Ø  brute force decryption (try each key) taking 1 sec on DES,

takes 149 trillion years for AES

20

Public Key Cryptography

symmetric key crypto
Ø  requires sender, receiver know

shared secret key
Ø  Q: how to agree on key in first

place (particularly if never
“met”)?

public key crypto
§  radically different approach

[Diffie-Hellman76, RSA78]
§  sender, receiver do not share

secret key
§  public encryption key known

to all
§  private decryption key known

only to receiver

21

Public key cryptography

plaintext
message, m

ciphertext encryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
message K (m)

B
+

K
B
+

Bob’s private
key

K
B
-

m = K (K (m))
B
+

B
-

22

Public key encryption algorithms

need K () and K () such that B B
. .

given public key K , it should be
impossible to compute private key K

B

B

requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm [1999]

+ -

K (K (m)) = m
B B

- +

+
-

23

Prerequisite: modular arithmetic
Ø x mod n = remainder of x when divide by n
Ø facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n

Ø thus
 (a mod n)d mod n = ad mod n
Ø example: x=14, n=10, d=2:

 (x mod n)d mod n = 42 mod 10 = 6
 xd = 142 = 196 xd mod 10 = 6

24

RSA: getting ready

Ø message: just a bit pattern
Ø bit pattern can be uniquely represented by an integer

number
Ø thus, encrypting a message is equivalent to encrypting a

number
example:
Ø  m= 10010001 . This message is uniquely represented by the decimal

number 145.
Ø  to encrypt m, we encrypt the corresponding number, which gives a new

number (the ciphertext).

25

RSA: Creating public/private key pair

1. choose two large prime numbers p, q.
 (e.g., 1024 bits each)

2. compute n = pq, z = (p-1)(q-1)

3. choose e (with e<n) that has no common factors
 with z (e, z are “relatively prime”).

4. choose d such that ed-1 is exactly divisible by z.
 (in other words: ed mod z = 1).

5. public key is (n,e). private key is (n,d).

K B
+ K B

-

26

RSA: encryption, decryption

0. given (n,e) and (n,d) as computed above

1. to encrypt message m (<n), compute
c = m mod n e

2. to decrypt received bit pattern, c, compute
m = c mod n d

m = (m mod n) e mod n d magic
happens!

c

27

RSA example:

Bob chooses p=5, q=7. Then n=35, z=24.
e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

bit pattern m m e c = m mod n e

0000l000 12 24832 17
encrypt:

encrypting 8-bit messages.

c m = c mod n d

17 481968572106750915091411825223071697 12

c d
decrypt:

28

Why does RSA work?

Ø  must show that cd mod n = m
where c = me mod n

Ø  fact: for any x and y: xy mod n = x(y mod z) mod n
§  where n= pq and z = (p-1)(q-1)

Ø  thus,
 cd mod n = (me mod n)d mod n

 = med mod n
 = m(ed mod z) mod n
 = m1 mod n
 = m

29

RSA: another important property

The following property will be very useful later:

K (K (m)) = m
B B

- +
K (K (m))

B B
+ -

=

use public key first,
followed by private

key

use private key first,
followed by public

key

result is the same!

30

How is it possible?

follows directly from modular arithmetic:

(me mod n)d mod n = med mod n
 = mde mod n
 = (md mod n)e mod n

31

Why is RSA secure?

Ø  suppose you know Bob’s public key (n,e). How hard is it to
determine d?

Ø  essentially need to find factors of n without knowing the
two factors p and q

§  fact: factoring a big number is hard

32

RSA in practice: session keys

Ø  exponentiation in RSA is computationally intensive
Ø  DES is at least 100 times faster than RSA
Ø  use public key crypto to establish secure connection, then

establish second key – symmetric session key – for
encrypting data

session key, KS
Ø  Bob and Alice use RSA to exchange a symmetric key KS

Ø  once both have KS, they use symmetric key cryptography

33

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??
“I am Alice”

34

in a network,
Bob can not “see” Alice, so

Trudy simply declares
herself to be Alice “I am Alice”

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

35

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Failure scenario??

“I am Alice”
Alice’s

IP address

36

Trudy can create
a packet “spoofing”

Alice’s address
“I am Alice”

Alice’s
IP address

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

37

Protocol ap3.0: Alice says “I am Alice” and sends her
 secret password to “prove” it.

Failure scenario??

“I’m Alice” Alice’s
IP addr

Alice’s
password

OK Alice’s
IP addr

Authentication: another try

38

playback attack: Trudy records
Alice’s packet

and later
plays it back to Bob

“I’m Alice” Alice’s
IP addr

Alice’s
password

OK Alice’s
IP addr

Authentication: another try

“I’m Alice” Alice’s
IP addr

Alice’s
password

Protocol ap3.0: Alice says “I am Alice” and sends her
 secret password to “prove” it.

39

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
 encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice” Alice’s
IP addr

encrypted
password

OK Alice’s
IP addr

40

record
and

playback
still works!

“I’m Alice” Alice’s
IP addr

encrypted
password

OK Alice’s
IP addr

Authentication: yet another try

“I’m Alice” Alice’s
IP addr

encrypted
password

Protocol ap3.1: Alice says “I am Alice” and sends her
 encrypted secret password to “prove” it.

41

Goal: avoid playback attack

Failures, drawbacks?

nonce: number (R) used only once-in-a-lifetime
ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice

must return R, encrypted with shared secret key

“I am Alice”

R

K (R) A-B
Alice is live, and only
Alice knows key to
encrypt nonce, so it

must be Alice!

Authentication: yet another try

42

Authentication: ap5.0
ap4.0 requires shared symmetric key
Ø  can we authenticate using public key techniques?
ap5.0: use nonce, public key cryptography

“I am Alice”

R
Bob computes

K (R) A

-

“send me your public key”

K A
+

(K (R)) = R A
-

K A
+

and knows only Alice could have
the private key, that encrypted R

such that

(K (R)) = R A
-

K A
+

43

ap5.0: security hole
man (or woman) in the middle attack: Trudy poses as Alice (to Bob)
and as Bob (to Alice)

I am Alice I am Alice
R

T
K (R)

-

Send me your public key

T
K

+
A K (R)
-

Send me your public key

A
K +

T K (m)
+

T
m = K (K (m)) +

T
-

Trudy gets

sends m to Alice
encrypted with Alice’s

public key

A K (m)
+

A
m = K (K (m)) +

A
-

R

44

ap5.0: security hole

difficult to detect:
§  Bob receives everything that Alice sends, and vice versa. (e.g., so Bob,

Alice can meet one week later and recall conversation!)
§  problem is that Trudy receives all messages as well!

man (or woman) in the middle attack: Trudy poses as Alice (to Bob)
and as Bob (to Alice)

45

Digital signatures

cryptographic technique analogous to hand-written
signatures:

Ø  sender (Bob) digitally signs document, establishing he is
document owner/creator.

Ø  verifiable, nonforgeable: recipient (Alice) can prove to someone
that Bob, and no one else (including Alice), must have signed
document

46

Digital signatures

simple digital signature for message m:
Ø  Bob signs m by encrypting with his private key KB, creating “signed”

message, KB(m)
-

-

Dear Alice
Oh, how I have missed you. I
think of you all the time! …
(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message, m,
signed (encrypted) with

his private key

m, K B
-
 (m)

47

-

Digital signatures

Alice thus verifies that:
§  Bob signed m
§  no one else signed m
§  Bob signed m and not m‘

non-repudiation:
ü  Alice can take m, and signature KB(m) to court and prove that Bob

signed m -

§  suppose Alice receives msg m, with signature: m, KB(m)
§  Alice verifies m signed by Bob by applying Bob’s public key KB to KB(m)

then checks KB(KB(m)) = m.
§  If KB(KB(m)) = m, whoever signed m must have used Bob’s private key.

-

- -

+

+ +

48

Firewalls

isolates organization’s internal net from larger Internet, allowing
some packets to pass, blocking others

firewall

 administered
network

public
Internet

firewall
trusted “good guys” untrusted “bad guys”

49

Firewalls: why do we need it?
prevent denial of service attacks:

§  SYN flooding: attacker establishes many bogus TCP connections, no
resources left for “real” connections

prevent illegal modification/access of internal data
§  e.g., attacker replaces CIA’s homepage with something else

allow only authorized access to inside network
§  set of authenticated users/hosts

three types of firewalls:
§  stateless packet filters
§  stateful packet filters
§  application gateways

50

Stateless packet filtering

Ø  internal network connected to Internet via router firewall
Ø  router filters packet-by-packet, decision to forward/drop packet based

on:
§  source IP address, destination IP address
§  TCP/UDP source and destination port numbers
§  ICMP message type
§  TCP SYN and ACK bits

Should arriving packet be
allowed in? Departing

packet let out?

51

Stateless packet filtering: example
Ø  example 1: block incoming and outgoing datagrams with IP protocol

field = 17 and with either source or dest port = 23
§  result: all incoming, outgoing UDP flows and telnet connections are

blocked
Ø  example 2: block inbound TCP segments with ACK=0.
§  result: prevents external clients from making TCP connections with

internal clients, but allows internal clients to connect to outside.

52

Policy Firewall Setting
No outside Web access. Drop all outgoing packets to any IP address,

port 80
No incoming TCP connections, except
those for institution’s public Web server
only.

Drop all incoming TCP SYN packets to any IP
except 130.207.244.203, port 80

Prevent Web-radios from eating up the
available bandwidth.

Drop all incoming UDP packets - except DNS
and router broadcasts.

Prevent your network from being used for
a smurf DoS attack.

Drop all ICMP packets going to a “broadcast”
address (e.g. 130.207.255.255).

Prevent your network from being
tracerouted

Drop all outgoing ICMP TTL expired traffic

Stateless packet filtering: more examples

53

action
source

address
dest

address
protocol

source
port

dest
port

flag
bit

allow 222.22/16
outside of
222.22/16

TCP > 1023 80
any

allow

outside of
222.22/16

222.22/16

TCP 80 > 1023 ACK

allow 222.22/16
outside of
222.22/16

UDP > 1023 53 ---

allow

outside of
222.22/16

222.22/16

UDP 53 > 1023 ----

deny all all all all all all

Access Control Lists

ACL: table of rules, applied top to bottom to incoming packets:
(action, condition) pairs

54

Stateful packet filtering
Ø  stateless packet filter: heavy handed tool
§  admits packets that “make no sense,” e.g., dest port = 80, ACK bit set, even

though no TCP connection established:

action
source

address
dest

address
protocol

source
port

dest
port

flag
bit

allow

outside of
222.22/16

222.22/16

TCP 80 > 1023 ACK

§  stateful packet filter: track status of every TCP connection
•  track connection setup (SYN), teardown (FIN): determine whether

incoming, outgoing packets “makes sense”
•  timeout inactive connections at firewall: no longer admit packets

55

action
source

address
dest

address
proto

source
port

dest
port

flag
bit

check
conxion

allow 222.22/16
outside of
222.22/16

TCP > 1023 80
any

allow

outside of
222.22/16

222.22/16

TCP 80 > 1023 ACK x

allow 222.22/16
outside of
222.22/16

UDP > 1023 53 ---

allow

outside of
222.22/16

222.22/16

UDP 53 > 1023 ----
x

deny all all all all all all

Stateful packet filtering

ACL augmented to indicate need to check connection state table before
admitting packet

56

Application gateways
Ø  filter packets on application data as well as on IP/TCP/UDP fields.
Ø  example: allow select internal users to telnet outside

1. require all telnet users to telnet through gateway.
2. for authorized users, gateway sets up telnet connection to dest host.

Gateway relays data between 2 connections
3. router filter blocks all telnet connections not originating from

gateway.

application
gateway

host-to-gateway
telnet session

router and filter

gateway-to-remote
host telnet session

57

Limitations of firewalls, gateways
Ø  IP spoofing: router can’t know if

data “really” comes from claimed
source

Ø  if multiple app’s. need special
treatment, each has own app.
gateway

Ø  client software must know how
to contact gateway.

§  e.g., must set IP address of
proxy in Web browser

Ø  filters often use all or nothing
policy for UDP

Ø  tradeoff: degree of
communication with outside
world, level of security

Ø  many highly protected sites still
suffer from attacks

