ATHEROSCLEROSIS

AND

THE HDL RECEPTORS

A REVIEW
• **High Density Lipoprotein (HDL)**
 - acts as a cholesterol scavenger
 - probably obtains cholesterol from cell surface membranes using lecithin:cholesterol acyltransferase (LCAT)
 - transfers some cholesterol esters (CE) to VLDL and LDL using cholesterol ester transfer protein (CETP)
 - transport of cholesterol and CE from tissues to liver and steroidogenic cells
 - excrete cholesterol from body
 - in form of bile acids
 - use as building blocks for steroids
IMPORTANCE

- Cardiovascular disease is the #1 killer in the US
 - 40% of all deaths
 - in the US 1.5 million new cases every year
 - chronic illness

- The Framingham Heart Study shows that a 1% reduction in an individual's total serum cholesterol level translates into an approximate 2% reduction in heart disease risk
• HDL RECEPTORS
 • SCAVENGER RECEPTORS
 • CUBILIN
 • MEGALIN
• **SCAVENGER RECEPTORS**

 • There are many classes of these receptors

 - Scavenger Receptor Class B Type 1 (SR-B1)
 - Scavenger Receptor Class B Type 2 (SR-B2)
 - Cluster Designation (CD) 36

 • Focus: SR-B1 and CD 36
• **SR-B1**

 • identified as a receptor for LDLs
 • greatest expression in hepatic and steriodogenic cells
 • in liver, ovary, lung and adrenal glands

 FUNCTIONS

 • decreases plasma levels of HDL and non-HDL cholesterol
 • mediates HDL CE selective uptake
 • anchors HDL molecules to plasma membranes without internalizing or degrading them
• STRUCTURE OF SR-B1

- 2 transmembrane domains
- 2 cytoplasmic domains
 - consists of amino and carboxyl terminals
 - C-terminal may facilitate uptake of CE into cells
 - N-terminal responsible for proper targeting of receptor to plasma membrane
- an extracellular domain
 - contains
 - a cysteine rich region
 - 9 putative sites for N linked glycosylation
- binding site for HDL CE
 - greatest efficiency for uptake and binding
- a non-aqueous channel between the HDL and the plasma membrane
• Extracellular domain
 • HDL CE uptake
 • Bi-directional free cholesterol flux
 • alteration of membrane cholesterol mass and distribution
• Cytoplasmic domain : N and C-terminals
 • C-terminal tail is dispensable for activity as well as for targeting to the plasma membrane
 • it does not confer an enhanced HDL CE selective uptake activity
 • N-terminal has no new activity roles
• Intestinal receptor for the endocytosis of intrinsic factor-vitamin B\textsubscript{12}
• high expression in kidney, yolk sac, placenta and hepatic cells
• binds to HDL and apolipoprotein A-1 (apo A-1)
• endocytosis of 127I-HDL inhibited by IgG antibodies against apo A-1 and cubilin
• deficiency results in loss of apo A-1 in urine
• uptake of apo A-1 and HDL from kidney tubules
• not a receptor for LDL or its derivatives
• **STRUCTURE OF CUBILIN**

 • a short N terminal sequence
 • this region is involved in membrane association
 • has a amphipathic helix pattern which is a potential site for hydrophobic interactions

 • 8 epidermal growth factor repeats

 • 27 CUB (Complement componentsClr/Cls, Uegf, and bone morphogenic protein-1) domain cluster
 • ligand binding sites:
 • domains 5-8 bind intrinsic factor-vitamin B$\textsubscript{12}$
 • domains 13-14 is a receptor-associated protein binding site
• Cubilin does not have apparent transmembrane and cytoplasmic domains

• **MEGALIN**
 • does not bind to HDL, delipidated HDL or apo A-1
 • co-purifies with cubilin
 • exhibits a coincident pattern of mRNA expression in mouse tissues including kidney, ileum, placenta and yolk sac – same as cubilin
 • suppression of megalin activity results in reduced cell surface expression of cubilin
 • megalin antibodies inhibit HDL uptake
 • may play a role in the intracellular trafficking of cubilin
• **ATHEROSCLEROSIS**

 • the higher the plasma concentrations of HDL the lower the risk
 • mechanism is unknown
 • strong correlation between atherosclerotic lesions and VLDL and LDL levels
 • combination of SR-B1 overexpression and a low fat diet demonstrates strong anti-atherogenic potential
 • overexpression of hepatic SR-B1
 • reduces advanced atherosclerotic lesions
 • decreases HDL cholesterol levels
 • moderately reduces non HDL cholesterol levels
• **FUTURE WORKS**

 - Structure of Megalin
 - Details of its interaction with cubilin
 - Determining the extent to which megalin is involved in HDL uptake
 - Crystalline structure of SR-B1
 - Details of the non-aqueous channel and its function
 - Mechanistic details of relation between atherosclerosis and HDL plasma concentrations
• ACKNOWLEDGEMENTS

• Dr Caro-Beth Stewart, Ph.D.
 University at Albany
 Department of Biological Sciences

• Mr. Tom Mennella
 University at Albany
 Department of Biological Sciences

• Eireann Collins
 University at Albany