Problem 1: Suppose A, B, C and D are arbitrary sets. **Prove or disprove:** \((A \times C) \cap (B \times D) = (A \cup B) \times (C \cup D)\).

Solution: The statement is false. The following is a counterexample.

\[
A = \{1\}, \quad B = \emptyset, \quad C = \{2\} \quad \text{and} \quad D = \emptyset.
\]

Here, \(A \times C = \{(1, 2)\}\) and \(B \times D = \emptyset\). Thus, \((A \times C) \cap (B \times D) = \emptyset\).

However, \(A \cup B = \{1\}\) and \(C \cup D = \{2\}\). Hence, \((A \cup B) \times (C \cup D) = \{(1, 2)\}\).

Hence, \((A \times C) \cap (B \times D) \neq (A \cup B) \times (C \cup D)\).

Problem 2: Suppose A, B and C are nonempty finite sets with cardinalities \(n_a\), \(n_b\) and \(n_c\) respectively. Derive a condition on \(n_a\), \(n_b\) and \(n_c\) so that there is a one-to-one function from \(A \times B\) to \(C\). Assuming that condition, give an expression for the number of one-to-one functions from \(A \times B\) to \(C\).

Solution: For finite sets X and Y, the condition for the existence of a one-to-one function from X to Y is \(|Y| \geq |X|\). When this condition holds, the number of one-to-one function from X to Y is given by \(|Y|!/(|Y| - |X|)!\).

Here, \(X = A \times B\). So, \(|X| = |A \times B| = n_a \times n_b\). Further, \(Y = C\). So, \(|Y| = |C| = n_c\).

Therefore,

(i) The condition for the existence of a one-to-one function from \(A \times B\) to \(C\) is: \(n_c \geq n_a \times n_b\).

(ii) Assuming that the condition given in (i) holds, the number of one-to-one functions from \(A \times B\) to \(C\) is: \((n_c)!/[n_c - (n_a \times n_b)]!\).

Problem 3: Let \(P = \{1, 2, 3, 4\}\) and \(Q = \{u, v, w, x, y\}\). How many functions from \(P\) to \(Q\) are neither one-to-one nor map 3 to \(y\)? Show work.

Solution: The total number of functions from \(P\) to \(Q\) is \(5^4 = 625\). Suppose \(N\) is the number of functions from \(P\) to \(Q\) which are either one-to-one or map the element 3 to \(y\). Then, the answer to the problem is \(625 - N\).

We can compute the value of \(N\) as follows. Let \(S_1\) denote the set of one-to-one functions from \(P\) to \(Q\) and let \(S_2\) denote the set of functions from \(P\) to \(Q\) that map the element 3 to \(y\). Thus, \(N = |S_1 \cup S_2|\). From the inclusion-exclusion formula, we have

\[
N = |S_1 \cup S_2| = |S_1| + |S_2| + |S_1 \cap S_2|.
\]

We now show how each cardinality value on the right side of the above equation can be computed.

(a) \(|S_1|\) is the number of of one-to-one functions from \(P\) to \(Q\). In constructing a one-to-one functions from \(P\) to \(Q\), the number of choices for the elements 1, 2, 3 and 4 are 5, 4, 3 and 2 respectively. Thus, \(|S_1| = 5 \times 4 \times 3 \times 2 = 120\).
Problem 5:
Let \(|S_2| \) is the number of functions from \(P \) to \(Q \) that map the element 3 to \(y \). To compute \(|S_2| \), note that there are 5 choices for each of the elements 1, 2 and 4 while there is only one choice for the element 3. Thus, \(|S_2| = 5 \times 5 \times 5 \times 1 = 125 \).

(c) To compute \(|S_1 \cap S_2| \), which is the number of functions from \(P \) to \(Q \) which are one-to-one and map the element 3 to \(y \), we reason as follows. Any such function is a one-to-one function from the set \(\{1,2,4\} \) to the set \(\{u,v,w,x\} \). In constructing such a function, the number of choices for the elements 1, 2 and 4 are respectively 4, 3 and 2. Thus, \(|S_1 \cap S_2| = 4 \times 3 \times 2 = 24 \).

Now, using the inclusion-exclusion formula, we have \(N = 120 + 125 - 24 \) or \(N = 221 \).

So, the required answer is \(625 - 221 = 404 \).

Problem 4: Suppose \(p, q \) and \(r \) are propositions such that \((\neg p \land \neg q) \rightarrow \neg r, \neg q \rightarrow \neg p \) and \(\neg r \rightarrow p \) are all true. Prove that \(q \) must be true. No credit will be given if you use a truth table to prove this result.

Solution: We will use a proof by contradiction. So, suppose \(q \) is false; that is, \(\neg q \) is true.

(1) Since \(\neg q \) is true (from our assumption) and \(\neg q \rightarrow \neg p \) is true (given), \(\neg p \) is true (by modus ponens); that is, \(p \) is false.

(2) Since \(\neg p \) is true (from (1)) and \(\neg q \) is true (from our assumption), \(\neg p \land \neg q \) is true (property of and operator).

(3) Since \(\neg p \land \neg q \) is true (from (2)) and \((\neg p \land \neg q) \rightarrow \neg r \) is true (given), \(\neg r \) is true (by modus ponens).

(4) Since \(\neg r \) is true (by (3)) and \(\neg r \rightarrow p \) is true (given), \(p \) is true (by modus ponens). However, this contradicts the conclusion in (1) that \(p \) is false.

Thus, \(q \) must be true.

Problem 5: Let \(U = \{1,2,3,4\} \). Assume that variables \(x \) and \(y \) take on values from \(U \). Let \(P(x,y) \) denote the predicate “\(x^2 < y + 1 \)” and let \(Q(x,y) \) denote the predicate “\(x^2 + y^2 < 12 \)”.

Give the truth values of each of the following propositions and explain how you arrived at your result:

(i) \((\forall x)(\forall y) \ P(x,y) \)

(ii) \((\exists x)(\forall y) \ P(x,y) \)

(iii) \((\exists x)(\exists y) \ Q(x,y) \)

(iv) \((\forall x)(\exists y) \ Q(x,y) \)

Solution: For this problem, the universe for the variables \(x \) and \(y \) is \(\{1,2,3,4\} \).

(i) The proposition \((\forall x)(\forall y) \ P(x,y) \) is false.

Explanation: When \(x = 2 \) and \(y = 1 \), we have \(x^2 = 4 \) and \(y + 1 = 2 \). So, \(x^2 < y + 1 \) is false for this combination of \(x \) and \(y \) values. In other words, \(P(2,1) \) is false. Therefore, \((\forall x)(\forall y) \ P(x,y) \) is false.

(ii) The proposition \((\exists x)(\forall y) \ P(x,y) \) is true.

Explanation: Choose \(x = 1 \). Now, for each value \(y \in \{1,2,3,4\} \), notice that \(x^2 = 1 \) is less than \(y + 1 \). Therefore, \((\exists x)(\forall y) \ P(x,y) \) is true.

(iii) The proposition \((\exists x)(\exists y) \ Q(x,y) \) is true.

Explanation: Let \(x = y = 1 \). Then \(x^2 + y^2 = 2 < 12 \). Thus \(Q(1,1) \) is true. Therefore, \((\exists x)(\exists y) \ Q(x,y) \) is true.
(iv) The proposition \((\forall x)(\exists y) \, Q(x, y)\) is false.

Explanation: Let \(x = 4\). Thus, \(x^2 = 16\). For this value of \(x\), no value for \(y \in \{1, 2, 3, 4\}\) can ensure that \(x^2 + y^2 < 12\). Thus, \((\forall x)(\exists y) \, Q(x, y)\) is false.

Problem 6: Let \(T\) be the set of all \(2 \times 2\) matrices with integer entries. Consider the function \(f : T \times T \rightarrow T\) defined by \(f(A, B) = A + B\), where ‘+’ denotes the sum of the two matrices.

(a) Is \(f\) a one-to-one function? Justify your answer.

(b) If \(f\) an onto function? Justify your answer.

Solution:

Part (a): \(f\) is not one-to-one. To see this, let

\[
A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_1 = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \quad \text{and} \quad B_2 = \begin{bmatrix} -2 & -2 \\ -1 & -2 \end{bmatrix}.
\]

Now,

\[
f(A_1, B_1) = A_1 + B_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad f(A_2, B_2) = A_2 + B_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.
\]

Thus, \(f\) maps two different inputs, namely \((A_1, B_1)\) and \((A_2, B_2)\), to the same result (namely, the \(2 \times 2\) matrix consisting of all zeros). So, \(f\) is not one-to-one.

Part (b): \(f\) is onto.

To prove this statement, we must show that for any \(2 \times 2\) integer matrix \(A\), there are \(2 \times 2\) integer matrices \(X\) and \(Y\) such that \(f(X, Y) = A\); that is, \(X + Y = A\). This can be achieved by choosing \(X\) as \(A\) itself and \(Y\) as the \(2 \times 2\) integer matrix in which all four entries are zero. Therefore, \(f\) is onto.

Problem 7: Let \(\mathcal{R}^+\) denote the set of positive real numbers. Consider the binary relation \(B\) on \(\mathcal{R}^+\) defined as follows: \((x, y) \in B\) if and only if \([x] = [y]\). Is \(B\) symmetric? antisymmetric? Explain your answer in each case.

Solution:

Part (a): \(B\) is not symmetric.

To see this, notice that \((7.3, 6.7)\) is in \(B\) since \([7.3] = [6.7] = 7\). However, \((6.7, 7.3)\) is not in \(B\) since \([6.3] = 6\) and \([7.3] = 8\).

Part (b): \(B\) is antisymmetric. We will prove this result by showing that if \((x, y) \in B\) and \((y, x) \in B\), then \(x = y\).

Let \((x, y) \in B\) and \((y, x) \in B\). By the definition of \(B\), we have

\[
[x] = [y] \quad (1)
\]

\[
[y] = [x] \quad (2)
\]

Since \(x\) and \(y\) are positive, we know that

\[
[x] \leq [x] \quad (3)
\]

\[
[y] \leq [y]. \quad (4)
\]

Now,
Thus, $[y] \leq [y]$. Combining this with the inequality $[y] \leq [y]$ (Equation (4)), we conclude that $[y] = [y]$. Thus, y must be an integer and $[y] = [y] = y$. In a similar manner, $[x] = [x] = x$. Since x and y are integers, the equation $[x] = [y]$ above immediately implies that $x = y$. Thus, the relation B is antisymmetric.

Problem 8: Suppose R_1 and R_2 are equivalence relations over a set A. Prove that $R_1 \cap R_2$ is also an equivalence relation.

Proof: We must show that $R_1 \cap R_2$ is reflexive, symmetric and transitive using the fact that both R_1 and R_2 satisfy those properties.

(a) Proof that $R_1 \cap R_2$ is reflexive: Consider any $x \in A$. We must show that $(x, x) \in R_1 \cap R_2$. This can be done as follows.

Since R_1 and R_2 are reflexive, $(x, x) \in R_1$ and $(x, x) \in R_2$. Therefore, $(x, x) \in R_1 \cap R_2$.

(b) Proof that $R_1 \cap R_2$ is symmetric: Let $(x, y) \in R_1 \cap R_2$. We must show that $(y, x) \in R_1 \cap R_2$. This can be done as follows.

Since $(x, y) \in R_1 \cap R_2$, $(x, y) \in R_1$ and $(x, y) \in R_2$. Since R_1 and R_2 are symmetric, $(y, x) \in R_1$ and $(y, x) \in R_2$. Therefore, $(y, x) \in R_1 \cap R_2$.

(c) Proof that $R_1 \cap R_2$ is transitive: Let $(x, y) \in R_1 \cap R_2$ and $(y, z) \in R_1 \cap R_2$. We must show that $(x, z) \in R_1 \cap R_2$. This can be done as follows.

Since $(x, y) \in R_1 \cap R_2$, $(x, y) \in R_1$ and $(x, y) \in R_2$. Likewise, $(y, z) \in R_1$ and $(y, z) \in R_2$. Since R_1 and R_2 are transitive, $(x, z) \in R_1$ and $(x, z) \in R_2$. Therefore, $(x, z) \in R_1 \cap R_2$.

This completes the proof.

Problem 9: How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 = 31$, if x_1, x_2, x_3 are non-negative integers and x_4 is a positive multiple of 8? (You may leave the answer as an expression consisting of binomial coefficients.)

Solution: To solve this problem, we will use the fact that the number of solutions to the equation

$$z_1 + z_2 + \ldots + z_r = q$$

where z_1, z_2, \ldots, z_r and q are all non-negative integers, is $C(q + r - 1, r - 1)$.

Since x_4 must be positive multiple of 8, it must assume values from the set $\{8, 16, 24, 32, \ldots\}$. Since all the variables are non-negative integers and the total should be 31, there is no solution when x_4 takes on any value ≥ 32. In other words, x_4 must assume a value from the set $\{8, 16, 24\}$. We compute the number of solutions in each of these three cases. The required answer is the sum of the numbers obtained in the three cases.

Case 1: $x_4 = 8$. In this case, the given equation becomes

$$x_1 + x_2 + x_3 = 23.$$

Using the above formula, the number of solutions is $C(23 + 3 - 1, 3 - 1) = C(25, 2)$.

Case 2: $x_4 = 16$. In this case, the given equation becomes

$$x_1 + x_2 + x_3 = 15.$$
Using the above formula, the number of solutions is \(C(15 + 3 - 1, 3 - 1) = C(17, 2) \).

Case 3: \(x_4 = 24 \). In this case, the given equation becomes

\[
x_1 + x_2 + x_3 = 7.
\]

Again, using the above formula, the number of solutions is \(C(7 + 3 - 1, 3 - 1) = C(9, 2) \).

Thus, the answer to the problem is \(C(25, 2) + C(17, 2) + C(9, 2) \). (This expression can be simplified to 472.)

Problem 10: What is the coefficient of \(x^{90}y^{7}z^{110} \) in the expansion of \((7x - 3y - z)^{207} \)? You need not simplify your answer.

Solution: Let \(q = 7x - 3y \). Thus, the function to be expanded is \((q - z)^{207} \). In this expansion, by the Binomial Theorem, the term \(T_1 \) containing \(z^{110} \) is given by

\[
T_1 = C(207, 97) q^{97} (-z)^{110} = C(207, 97) q^{97} z^{110}
\]

(5)

Now, consider the term \(q^{97} = (7x - 3y)^{97} \) occurring in \(T_1 \). When \((7x - 3y)^{97} \) is expanded using the Binomial Theorem, the term \(T_2 \) which contains \(x^{90} y^{7} \) is given by

\[
T_2 = C(97, 90) (7x)^{90} (-3y)^7 = -C(97, 90) 7^{90} 3^7 x^{90} y^{7}.
\]

(6)

From the equations for \(T_1 \) and \(T_2 \), it follows that the term containing \(x^{90} y^{7} z^{110} \) in the expansion of \((7x - 3y - z)^{207} \) is given by

\[
-C(207, 97) C(97, 90) 7^{90} 3^7 x^{90} y^{7} z^{110}
\]

Therefore, the required coefficient is

\[-C(207, 97) C(97, 90) 7^{90} 3^7.\]

Problem 11: Consider the infinite sequence of integers \(f_0, f_1, f_2, \ldots, \) defined by \(f_0 = f_1 = 6 \) and \(f_n = 2f_{n-1} + 3f_{n-2} \) for all \(n \geq 2 \). Use induction on \(n \) to prove that for all \(n \geq 0 \), \(f_n = 3 \left[3^n + (-1)^n \right] \).

Solution: Since \(f_n \) is defined using \(f(n - 1) \) and \(f(n - 2) \), we will use the strong form of induction to prove this result.

Basis: We verify the basis for \(n = 0 \) and \(n = 1 \).

Case 1: \(n = 0 \). Here \(f_0 = 6 \) (given). For \(n = 0 \), the value of the expression \(3 \left[3^n + (-1)^n \right] \) is \(3 \left[3^0 + (-1)^0 \right] = 3(1 + 1) = 6 \). Thus, the basis is true for \(n = 0 \).

Case 2: \(n = 1 \). Here \(f_1 = 6 \) (given). For \(n = 1 \), the value of the expression \(3 \left[3^n + (-1)^n \right] \) is \(3 \left[3^1 + (-1)^1 \right] = 3(3 - 1) = 6 \). Thus, the basis is true for \(n = 1 \) as well.

Induction Hypothesis: Assume that for some \(k \geq 1 \) and all \(r, 0 \leq r \leq k \), \(f_r = 3 \left[3^r + (-1)^r \right] \).

To prove: \(f_{k+1} = 3 \left[3^{k+1} + (-1)^{k+1} \right] \).

Proof: Since \(k \geq 1 \), \(k + 1 \geq 2 \). So, we can apply the recursive definition to \(f_{k+1} \) to get

\[
f_{k+1} = 2f_k + 3f_{k-1}
\]

(7)

To make it easier to follow the calculations, we will consider each term on the right side of Equation (7) separately. The first term is \(2f_k \). Now,
\[f_k = 2 \left[3^k + (-1)^k \right] \quad \text{(Inductive hypothesis for } f_k) \]
\[= 2 \cdot 3^{k+1} + 6 (-1)^k \]
\[= 2 \cdot 3^{k+1} - 6 (-1)^{k+1} \]

The second term is \(3 f_{k-1} \). Now,
\[3 f_{k-1} = 3 \left[3^{k-1} + (-1)^{k-1} \right] \quad \text{(Inductive hypothesis for } f_{k-1}) \]
\[= 3^{k+1} + 9 (-1)^{k-1} \]
\[= 3^{k+1} + 9 (-1)^{k+1} \]

Substituting the expressions for \(2 f_k \) and \(3 f_{k-1} \) in Equation (7), we get
\[f_{k+1} = 2 \cdot 3^{k+1} - 6 (-1)^{k+1} + 3^{k+1} + 9 (-1)^{k+1} \]
\[= 3 \cdot 3^{k+1} + 3 (-1)^{k+1} \]
\[= 3 \left[3^{k+1} + (-1)^{k+1} \right] \]

The last equation shows that \(f_{k+1} \) has the required form, and this completes the proof.

Problem 12: Consider a square whose side has length 1. Suppose \(S \) is an arbitrarily chosen set of 5 points from this square. Prove that \(S \) must contain two points whose distance is at most \(1/\sqrt{2} \).

Proof: Let \(Q \) denote the given square each of whose sides has length 1. Divide \(Q \) into 4 subsquares \(Q_1, Q_2, Q_3 \) and \(Q_4 \), each of whose sides has length \(1/2 \) as shown below.

![Diagram](image)

In each subsquare, the maximum distance between any pair of points is the length of a diagonal. By Pythagoras Theorem, the length of any diagonal in a subsquare is \(\sqrt{(1/2)^2 + (1/2)^2} = 1/\sqrt{2} \). Thus, we have the following observation.

Observation: For any subsquare \(Q_i \) \((i \in \{1, 2, 3, 4\}) \), the maximum distance between a pair of points in \(Q_i \) is \(1/\sqrt{2} \).

Now, consider any set \(S = \{p_1, p_2, p_3, p_4, p_5\} \) of 5 points chosen from \(Q \). Consider a function that maps each \(p_i \) to one of the subsquare in which \(p_i \) lies. (If \(p_i \) lies on a line shared by two subsquares or \(p_i \) is the center of \(Q \) that is shared by all the subsquares, the function maps \(p_i \) to one of the subsquares arbitrarily.) Since there are 5 points and only 4 subsquares, by the pigeon hole principle, the function must map at least two points of \(S \), say \(p_x \) and \(p_y \), to the same subsquare \(Q_i \). By the observation mentioned above, the distance between \(p_x \) and \(p_y \) is at most \(1/\sqrt{2} \), and this completes the proof.