CONFERENCE SCHEDULE
APRIL 15, 2011

0800 – 0845 Registration

0845 – 0850 Welcome – Assembly Hall

0850 – 0920 Opening Keynote Speaker:
Alain Diebold – Assembly Hall

ASSEMBLY HALL TERRACE LOUNGE
0925 – 0950 Taewoo Nam Kyang-Yuan (Ray) Huang
0955 – 1020 Muckell, Ping, Patil Shiho Sawai & Dyoko Sayogo

1025 – 1035 BREAK

1035 – 1100 Sreekumar Nampoothiri Jeongyoon Lee
1105 – 1130 Stephen Lackey Djoko Sayogo

1135 – 1235 Lunch and Poster Sessions – Fireside Lounge

1235 – 1305 Afternoon Keynote Speaker:
Suraj Commuri – Assembly Hall

ASSEMBLY HALL TERRACE LOUNGE
1310 – 1335 Junesoo Lee Xiaoai Ren
1335 – 1400 Sherly Abraham Mohammed Gharawi

1400 – 1410 BREAK

1410 – 1435 Lenore Horowitz

1440 – 1450 Closing Remarks: Dean Peter Bloniarz – Assembly Hall
Speaker and Poster Presentation Addendum

Afternoon Keynote Speaker

Suraj Commuri

Tables Turned: The Researcher as the Subject. Discovery and Dissemination in the Digital Age

Presenter Bio:
Dr. Suraj Commuri is on the faculty in Department of Marketing at the School of Business and he is an affiliate faculty member of Informatics Department. Prior to academia, he was a marketing research consultant and worked with brands such as Avon, British Broadcasting Corporation, British Petroleum, Ford Motor Co., McDonalds Corporation, United Distillers, and World Health Organization. His research has been published in various journals, including Journal of Consumer Research, Journal of Marketing, and Journal of Macromarketing. He is on the editorial boards of Journal of Consumer Behaviour and Journal of Business Research.
Presenter Bio:
Xiaojun Yuan is an Assistant Professor in the Department of Information Studies, College of Computing and Information at University at Albany, State University of New York. Her research interests include information-seeking behavior, information retrieval, user interface design and evaluation, information visualization, usability testing, human-computer interaction, and digital libraries.

Catherine Dumas: please see pg. 19

Abstract:
Due to the increasing importance of digital libraries and similar information systems in society and increasing variety of users of such systems, it is becoming important to investigate the effectiveness of a spoken language and gesture input interface to digital libraries and similar information systems. Users of digital libraries and other information systems typically carry out searches with very short queries leading to sub-optimal retrieval performance. This research hypothesized that users will provide better and more useful descriptions of their information problems if they are able to speak to the system. We intend to construct a spoken language and gesture based interface to an information system.
Presenter Bio:
Muhammad Asim Mubeen is a Ph.D. candidate in the Knuth Cyberphysics Laboratory in the Department of Physics at the University at Albany, SUNY working in collaboration with Dr. Dennis J. McFarland of the Wadsworth Institute’s Brain Computer Interface (BCI) Group. His research interests include Brain-Machine interface, Biomedical Signal Processing, Source separation and localization, Optimization theory, Computational Physics and Bayesian Inference.

Dr Knuth is associate professor of Physics and Informations at the University at Albany, SUNY. He is director of KnuthLab and Knuth Cyberphysics Laboratory. He is the president of Autonomous Exploration Inc. His research areas include: Cyberphysics, Intelligent Instruments, Brain-Robot Interface, Source Separation of Mixed Signals, Information Processing in the Brain, Identification of Relevant Causal Interactions, Role of Order in Physical Law, and Foundations of Inference and Inquiry.

Abstract:
The online detection of evoked brain responses is a key ingredient in an important class of brain computer interface (BCI) paradigms like P300-based BCI. Here we present an evoked response filter based on the Bayesian evidence of a model for the evoked brain response in an ongoing electroencephalo-graphic (EEG) signal. By using the differentially Variable Component Analysis (dCVA) algorithm, we can estimate evoked response componentry and create waveform templates as well as a spatial map of each component’s projection onto the electrode array for an individual subject.