- Liu, Y., Szaro, B.G. (2011) hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development 138: 3079-3090.
- Szaro, B.G., and Strong, M.J. (2011) Regulation of cytoskeletal composition in neurons: transcriptional and post-transcriptional control in development, regeneration, and disease. Adv. Neurobiol. 3: 559-602.
- Gibbs, K., Chittur, S., Szaro, B.G. (2011) Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. Eur. J. Neurosci. 33: 9-25.
- Szaro, B.G., and Strong, M.J. (2010) Post-transcriptional control of neurofilaments: new roles
in development, regeneration and neurodegenerative disease. Trends Neurosci 33: 27-37.
- Ananthakrishnan, L., Szaro, B.G. (2009) Transcriptional and translational dynamics of light
neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration. Brain Res
1250: 27-40.
- Thyagarajan, A., and Szaro, B.G. (2008) Dynamic endogenous
association of neurofilament mRNAs with K-homology domain
ribonucleoproteins in developing cerebral cortex. Brain Res. 1189:
33-42.
- Ananthakrishnan, L., Gervasi, C., and Szaro, B.G. (2008) Dynamic
regulation of middle neurofilament (NF-M) RNA pools during optic
nerve regeneration. Neurosci. 153: 144-153.
- Liu, Y., Gervasi, C., and Szaro, B.G. (2008) A crucial role for hnRNP
K in axon development in Xenopus laevis. Development 135: 3125-
3135.
- Thyagarajan, A., Strong, M.J., and Szaro, B.G. (2007) Post-transcriptional control of neurofilaments in development and disease. Exp. Cell Res. 313: 2088-2097.
- Thyagarajan, A., Strong, M.J., and Szaro, B.G. (2007) Post-transcriptional control of neurofilaments in development and disease. Exp. Cell Res. 313: 2088-2097.
- Feng, X., Castracane, J., Tokranova, N., Gracias, A., Lnenicka, G., and Szaro, B.G. (2007) A living cell-based biosensor utilizing G-protein coupled receptors: Principles and detection methods. Biosens. Bioelect. 22: 3230-3237.
- Gibbs, K.M., and Szaro, B.G. (2006) Regeneration of descending projections in Xenopus laevis tadpole spinal cord demonstrated by retrograde double labeling. Brain Res. 1088: 68-72.
- Smith, A., Gervasi, C., and Szaro, B.G. (2006) Neurofilament content is correlated with branch length in developing collateral branches of Xenopus spinal cord neurons. Neurosci. Lett. 403: 283-287.
- Gervasi C, Szaro BG. (2004) Performing functional studies of Xenopus laevis intermediate filament proteins through injection of macromolecules into early embryos. Methods Cell Biol. 78:673-701.
- Thyagarajan A, Szaro BG. (2004) Phylogenetically conserved binding of specific K homology domain proteins to the 3'-untranslated region of the vertebrate middle neurofilament mRNA. J Biol Chem. 279:49680-8.
- Gervasi, C., Thyagarajan, A., and Szaro, B.G. (2003) Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons. J. Comp. Neurol. 461:262–275.
- Undamatla, J. and Szaro, B.G. (2001) Differential expression and localization of neuronal intermediate filament proteins within newly developing neurites in dissociated cultures of Xenopus laevis embryonic spinal cord. Cell Motil. Cytoskel. 49:16-32.
- Walker, K.L., Yoo, H.K., Undamatla, J., and Szaro, B.G. (2001) Loss of neurofilaments alters axonal growth dynamics. J. Neurosci., 21:9655-9666.
- Gervasi, C., Stewart, C.-B., and Szaro, B.G. (2000) Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons. J. Comp. Neurol. 423:512-531.
- Roosa, J.R., Gervasi, C., and Szaro, B.G. (2000) Structure, biological activity of the upstream regulatory sequence, and conserved domains of a middle molecular mass neurofilament gene of Xenopus laevis. Mol. Brain Res. 82:35-51.
- Dearborn, R.E. Jr., Szaro, B.G. and Lnenicka, G.A. (1999) Cloning and characterization of AASPs: Novel axon-associated SH3 binding-like proteins. J. Neurobiol. 38:581-594.
- Dearborn, R.E. Jr., Szaro, B.G. and Lnenicka, G.A. (1998)Microinjection of mRNA encoding rat synapsin Ia alters synaptic physiology in identified motoneurons of the crayfish, Procambarus clarkii. J. Neurobiol. 37:224-236.
- Zhao, Y. and Szaro, B.G. (1997) Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L. J. Comp. Neurol. 377:351-364.
- Gervasi, C. and Szaro, B.G. (1997) Sequence and expression patterns of two forms of the middle molecular weight neurofilament protein (NF-M) of Xenopus laevis. Mol. Brain Res. 48:229-242.
- Zhao, Y. and Szaro, B.G.(1997) Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during regeneration and development. J. Neurobiol. 33:811-824.
- Lin, W. and Szaro, B.G. (1996) Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis. Dev. Bio. 179:197-211.
- Jian, X., Szaro, B.G. and Schmidt, J.T. (1996) Myosin light chain kinase: expression in neurons and upregulation during axon regeneration. J. Neurobiol. 31:379-391.
- Zhao, Y. and Szaro, B.G. (1995) Pathway selection and target removal influence the neurofilament compositions of regenerating optic axons in Xenopus laevis. J. Neurosci. 15:4629-4640.
- Gervasi, C. and Szaro, B.G. (1995) The Xenopus laevis homologue to the neuronal cyclin dependent kinase (cdk5) is expressed by gastrulation. Mol. Brain Res. 33:192-200
- Lin, W. and Szaro, B.G. (1995) Neurofilaments help maintain normal morphologies and support elongation of neurites in Xenopus laevis cultured embryonic spinal cord neurons. J. Neurosci. 15:8331-8344.
|